HP TestExec SL

Customizing HP TestExec SL

Notice

The information contained in this document is subject to change without
notice. Hewlett-Packard Company (HP) shall not beliable for any errors
contained in this document. HP makes no warranties of any kind with regard
to this document, whether express or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights L egend

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rightsin Technical
Data and Computer Software clause of DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.SA.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forthin FAR 52.227-19 (c) (1,2).

Use of this manual and magnetic media supplied for this product are
restricted. Additional copies of the software can be made for security and
backup purposes only. Resale of the software in its present form or with
dterationsis expressly prohibited.

Copyright © 1995 Hewlett-Packard Company. All Rights Reserved.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft
Corporation.

Windows, Visual Basic, ActiveX, and Visual C++ are trademarks of
Microsoft Corporation in the U.S. and other countries.

LabVIEW® is a registered trademark of National Instruments Corporation.

Q-STATS Il is a trademark of Derby Associates, International.

Printing History

E2011-90016 — Software Rev. 2.10 — Rev. D (current with Rev. D of other
HP TestExec SL manuals) - First Printing - May, 1997

E2011-90020 — Software Rev. 3.00 — Rev. E - January, 1998

E2011-90024 — Software Rev. 4.00 — Rev. F - August, 1999

About This Manual

Thismanual describes how to customize various aspects of HP TestExec SL,
such as creating custom operator interfaces, writing switching handlers from
scratch, customizing datalogging, and customizing online help.

Conventions Used in this Manual

Vertical bars denote a hierarchy of menus and commands, such as:

View | Listing | Actions
Here, you are being told to choose the Actions command that appears when
you expand the Listing command in the View menu.

Items you must specify areitalicized and enclosed by angle brackets, like
this:

<filename.txt>
which you might replace by typing:
M/Fil e. txt

To make the names of functions stand out in text yet be concise, the names
typically are followed by “empty” parentheses—iMyfFuncti on() —
that do not show the function’s parameters.

Most programming examples use the C++ convention for comments, which
is to begin commented lines with two slash characters, like this:

/1 This is a coment
C++ compilers also will accept the C convention of:
/* This is a comrent */

The C++ convention is used here simply because it results in shorter line
lengths, which make examples fit better on a printed page. If you are using a
C-only compiler, be sure to follow the C convention.

Contents

1. Customizing the Operator Interface

About Operator INTErfaceS ..o e 2
What is an Operator INterface?.........ccovvveve e viee e 2
Which Operator Interfaces are Provided? ... 2
Why Customize an Operator Interface?........ccccvvevveveeveiecceee e 2
Which Programming Languages Can | USE?........ccccevevvvivieciecnenne 3
What isthe Best Way to0 Begin?........cccoiveieiniiniseeeee e 3
What Should an Operator Interface LOOK LiKE?cccovvvveiviivicinnnnnns 3

OVEIVIBIW ...ttt e e saeseesneeaeneens 3
KNOW Y OUr AUdIENCE. ..o 4
Keep the Appearance SIMPIe.......c.cooeivireiiniciese s 4
What Level of Access Should Operators Have?...........ccccccveeueane. 5
Makethe Layout LOQICalccccoeririeeriniriesieieese e 5
Interacting With Operators........ccccveveeveeieesie e seere e 7
(@ oY= S 7
Providing Useful Prompts & Status Information...................... 7
Minimizing Visual CIUEErccovvviieieie e 8
Making MessageS Clearccoeviieieininiese e 8
Preventing Common Errors Before They Occur............ccoc...... 9
Using Shortcuts to Accommodate Different Styles.................. 9
What About Multiple Languages?........ccccceeviveveevienieesecsiee e 10
What About Testing the Operator Interface?..........coceevveevenennee. 11

About Automation INtErfaceSccvveveiiiieve e 12
What is an Automation INterface?.........ccccvevvvveecveesie s, 12
A Typical Scenario for an Automation Interface.........c..cccocveveenenen. 12
What Tasks Does an Automation Interface DO?..........cccoeceeenennee. 13

Testing & Debugging an Operator Interface.........cococveveeieciecve e, 14
How Should | Test and Debug an Operator Interface?........cccceeueee 14
Using Sample Actions to Exercise an Operator Interface................. 14

Operator Interfaces Created in Visual BasiCcccceeeevevececcicieciene, 15
What is the Standard Operator Interface in Visual Basic?................ 16
How Much Visual Basic Do | Need to KNOW?........cccocvveeieinieenens 17
How Does Visual Basic Interact with HP TestExec SL7?.................. 17
What is Inside the HP TestExec SL Control?ccceeevveeeeeveninenene, 18

Contents-1

Adding the HP TestExec SL Control to a Project...........cccceovvieineee. 19

Getting Online Help for the Contral ..., 21
Finding Itemsin Operator Interface Code..........c.ccccevvvevveiecieenieenne. 21
What is the Minimum Operator Interface to Run a Testplan?.......... 21
Writing the Code for a Minimal Operator Interface.................... 22
Why the Minima Operator Interfaceis Not Enough................... 22
Understanding the HP TestExec SL Control's States & Methot8
Understanding the HP TestExec SL Control’s Events............... 25
The Two Levels of EVENES.......covvviiiiiiiiiiiieeee e 25
Events Associated with Testplans.........ccccccoeeivieeeivciiiieenen. 25
Events Associated with Individual Tests...........cccoeiiiiiciccinnes 28
About Test-Level EVENtS.........c.oovvvviiiiiiiiiiiiiieee 28
Miscellaneous EVENtS...........ccovvvveeiiiiiii e, 30
Using the HP TestExec SL Control’'s Events........................ 31
Understanding User-Defined Messages.......cccccceevvvveeevveevevvnnnnnnn. 31
Why Pass Information Between Processes?..........ccccvvevnnnee. 31
Passing Information Between Processes.........ccoeevvveeeeievennnnns 32

User-Defined Messages Reserved by Hewlett-Packard...... 39
Accessing Hardware Resources from an Operator Interface... 39
When Do Operator Interfaces Access Hardware ResourcesS?®

Accessing the Hardware ReSOUICES........cccovvviiiiiiiiieeeeeeeieiinns 40
What About Concurrent TeStiNG2.......cocvvvviiiiiiiieeeeeeeeeee e 41
Miscellaneous NOLES.........oooiiiii i 43
Changing or Enhancing Existing Functionality............................ 43

Changing the Configuration of an Operator Interface........... 43

A Quick Way to Hide Existing Functionality........................... 43

Controlling the Information That Appears in Reports........... 44

Accessing the Default Information................oeeovvivveiiinnn. 44
What if Reports Need Additional Information?................. 45
What if Reports Need Different Information?.................... 46
Changing the Language...........cccoviiiiiiiieiiiiiiiieee e a7
Which Languages Can | US@2.......cccccvvvvvivviiiiiiiiiie 47
Changing the Default Language...........cccovvvvviiiiiiieeeeeirennnnns 47
Switching Among the Built-In Languages...........ccccvvvvenn. 48
How Does Multi-Language Support Work?....................... 49
What About Languages That Are Not Built In?................ 50
Adding Language Support for a New Control................... 53
Adding Language Support for a New Message................ 54

Contents-2

Contents

Prompting a System Operator from HP TestExec SL.................. 55
Associating Testplans & UUTs with an Operator Interface......... 58
Using Peripherals with Operator Interfaces...........cccoovvvvivececeieenens 61
Which Peripherals are SUpported?...........ccooeveveevienenenncseseene 61
The “One Peripheral Per Form” Conventian.......................... 61
Using Bar Code ReadErS.........cccuviiiiiiiieieeeeeis e 62
About Bar Code Readers...............uueuueeueeeeeieiieiieeiiieeeeeeeeeenn 62
Changing the Processing of Bar Codes.........c.cccceeeeeeeeneee. 63
Testing the Code for Bar Code Readers..............ccceeeee. 64
Accessing Symbol Tables from an Operator Interface............... 65
Operator Interfaces Created in Visual Cha....vvvveeeiveiviieieeiiiiieeeeeeeee, 68
What is the Standard Operator Interface in Visual C++2........... 68
Inside an Operator Interface in Visual Ct+.....ooovvvviiieniieciniininnnn, 69
OVBIVIBW. ..ot eeeeees 69
How the Operator Interface Requests Service...................... 70
Accessing Global Data from the Operator Interface............. 72
Interacting with the Test Sequencer............cccvvveeeeeiiiiiiiiennnn. 72
Creating an Operator Interface in Visual Ct%.....coooooeeiviiiiiinnnnnnn. 73
Doing Specific Tasks with an Operator Interface in Visual C++74
Responding to a “Run” BUttON.............ccoovviiiiiii e, 74
Beginning a Test CYCle........ccoooiiiiiiiiic e 75
Displaying the Name of the Current Test.........ccccvvvvvvvevveennnn. 76
Displaying the Testplan and Test TiMiNg..........cccccvvvvvvviveennn.. 76
Displaying MESSAQgES.......cceiiieeiiiiieiiiiiie e ee e e e 76
Beginning When the Testplan Name is Unknown................. 76
Creating an Automation Interface in Visual Ct..........cooevvnnnnnnns 77
Software Configuration for an Automation Interface............. 77
Choosing a Task Model in WindOWS...........ccccovviuvvnnniiniinninnns 77
Using a Bar Code Reader...............coooee et 79
Monitoring Test RESUILS...........uiiiiiii e, 79
Displaying Messages to the User Interface........c..ccccceeeeeeei. 80
Responding to Keyboard and Mouse Commands................. 80
Generating Repair Information...............cccvvvvvvivievieeiiiieeeeeeene, 81
Writing Repair TiCKets..........coooooiiiii s 81

Contents-3

Signaling Downstream DeViCES.........cccveveieiieece e, 82

(D = oo [0 1 1o OSSP 82
LAN COMMUNICALIONS........cieeeereeiieeeeie e ee e 82
Dealing with Problems..........ccccoooeie e, 82

2. Creatinga Hardware Handler

Writing aHardware Handler ..o 86
Modding Your HardWare.cccoeceeieeveciie s 86
Monitoring the Status of Hardware...........cccccoeevieeveevececceccee e, 87
Creating a Project for the Hardware Handlerccccccveveeneenennee. 89

Specifying the Path for Libraries...........cccocooviveeeie i, 89
Specifying the Path for Include Files...........cccoveeeveiicicicciee, 90
Creating aNew DLL Projectcccceovivininninisenesessese s 91
Specifying the Project SettingS......ccoceviveveeveece e 92
Creating an Implementation File for the Hardware Handler 93
Writing the Routines for Functions in the Implementation File.. 94
Verifying the Project’'s Contents...........ccccccuvvvvvvviivvvininininnnnnnne. 99
Choosing Which Configuration to Build.................................. 99
Building the Project..........cooviiiiiiiiiiieee e 100
Copying the DLL to Its Destination Directory..........c.ccccuunn... 100

3. Customizing Datalogging

The Datalogging Configuration Editor............cccccovvvviiiiii . 102
Modifying the Records & Fields in Datalogging Files.................... 103
Enhancing Datalogging............uuiiiiiiiee e e e e 104
Interacting with Symbol Tables.........cccocviiiii e, 104
Knowing When a Datalogging File is Available........................ 105
Using the Results of Datalogging in Custom Applications...... 106
Disabling the Writing of Datalogging Files................c.......... 106
Custom Parsing the Results of Datalogging........................ 107
Parsing the Results as a Testplan Runs.......................... 107
Parsing the Results in a Datalogging File....................... 108
Changing the Name of the Datalogging File.............ccccccvvnnn..o. 109
Using the HP TestExec SL Datalogging Control............ccccceeeernnne 112
What is the HP TestExec SL Datalogging Control2................. 112
What's Inside the Datalogging Contral?............ccoovvvviiiiiinneen 112

Accessing Collections & Obijects in the Datalogging Contral. 115

Contents-4

Contents

Adding the Datalogging Control to a Project

Getting Online Help for the Datalogging Contralccccee.e... 118

Index

Contents-5

Customizing the Operator Interface

This chapter describes how to customize the user interface that operators of a
test system use in a production environment. It also describes variations on
operator interfaces for test systems that control automation equipment.

Customizing the Operator Interface
About Operator Interfaces

About Operator Interfaces

What isan Operator |nterface?

Typically, you do not want operators of atest system in a production
environment to access al the features that HP TestExec SL provides for
developing testplans. For example, you probably do not want to et operators
modify or delete the testsin atestplan. Or, your test system may need a
simplified user interface so that non-technical operators can useit. Any of
these variations on user interfaces intended to meet the needs of a specific
set of system operators is an “operator interface.”

Which Operator Interfaces are Provided?

HP TestExec SL comes with two working user interfaces, one written in
Visual Basic and one written in Visual C++, that are intended for use by
production operators of a test system. These “ready to run” operator
interfaces provide the basic control features and status information needed in
a typical production environment. You can use one of these example
operator interfaces as-is or customize it to meet your specific requirements.

Specific features of the example operator interfaces are described in greater
detail later with related, language-specific topics.

Why Customize an Operator |nterface?

Because its appearance and features define the tasks operators can do, to a
large extent the operator interface dictates how operators interact with a test
system. For example, a very simple operator interface might provide Start
and Stop buttons as its only controls to deliberately limit operator interaction
with a test system. It might include nothing more than a Pass/Fail indicator
to provide status information if the operator’s task is simply to sort UUTs

into groups of those that pass versus those that fail.

However, an interface intended for more sophisticated operators, such as
those who do troubleshooting, probably needs more features. For example, a
troubleshooter might need to know the name of the failing test and

Customizing the Operator Interface
About Operator Interfaces

information about how the test failed. Also, it might be useful to have an
option that lets troubleshooters rerun the test or halt on the point at which it
fails and manually take measurements with aDMM there.

Another good use for a custom operator interface is when you need to
support multiple languages. For example, you could create separate
interfaces for various languages or a single interface with an option that lets
operators choose their preferred language.

Which Programming Languages Can | Use?

HP TestExec SL lets you create custom operator interfaces in either

Microsoft Visual Basic or Microsoft Visual C++.1 Generally speaking, using
Visual Basic isthe easier of the two. However, if you are familiar with
Visual C++ and MFC (Microsoft Foundation Classes), you may prefer to
develop operator interfacesin Visual C++.

What isthe Best Way to Begin?

Regardless of which programming language you use, the best way to create
acustom operator interface is to begin with one of the working examples
provided with HP TestExec SL, and then customize it to meet your your
specific needs.

What Should an Operator Interface Look Like?

Overview

Effective operator interfaces seldom just happen. Creating an operator
interface can be analogous to writing a book insofar as designing an operator
interface is like starting with a clean sheet of paper upon which you can
write anything. In either case, you need to understand the needs of your
audience (users) and create a clear, well organized end product that is
appropriate for them. Time spent designing an operator interface that is easy

1. Besides Visual Basic, you can create an operator interface in any language
capable of producing a Windows DLL. However, Visual C++ isthe only
language whose use we document.

Customizing the Operator Interface
About Operator Interfaces

to use will pay off in greater productivity and fewer errors by those who use
the test system.

If you are not starting from scratch—e.g., you already have an operator
interface that is used on other test systems—you have a couple of choices. If
desired, you can implement that interface as HP TestExec SL's operator
interface. Or, you can break with tradition and design a new—and perhaps
easier to use—interface, especially if using HP TestExec SL causes you to
move to the Windows platform and its conventions for user interfaces.

Something else you may want to consider is which other computer
applications the operators of your test system use. If they already are
familiar with another application, you can minimize operator training by
designing a custom operator interface that works in a similar, familiar
manner.

The next several topics describe design practices you should keep in mind
when creating operator interfaces.

Know Your Audience

Be sure you know your intended audience. Are their skills nontechnical,
semitechnical, or technical? Are they computer literate? Do they have
enough familiarity with your product to understand product-specific
terminology?

If your operators are nontechnical or not computer literate, you probably will
need different wording than if they are. For example, it may not be safe to
assume they are familiar with Windows terminology. Also, avoid jargon.
Programmers might understand “Get the menu pick” but “Choose an item
from the menu” would be more meaningful for most operators. When in
doubt, simplify, because even operators with technical skills are unlikely to
complain that your operator interface is too easy to use.

Keep the Appearance Simple

When planning the visual appearance of an operator interface, be
conservative instead of making the interface fancy. Use large, legible fonts

Customizing the Operator Interface
About Operator Interfaces

and minimize the use of color and graphics unless they contribute useful
information.

Do this... Instead of this...

Start Stax

Making an operator interface too “busy” with numerous fonts, colors, and
graphics can impair its usability because visual clutter makes it overly
difficult for users to separate the significant from the insignificant.

Although it may seem that using all capital letters emphasizes text, studies
have shown that overuse of capital letters makes text significantly more
difficult to read. In fact, mixed-case characters increase reading speed and
comprehension from 14-20% over all capitals. Thus, we recommend that
you use mixed case in most text that appears in operator interfaces. Limit the
use of all capitals to items that truly need emphasis.

What Level of Access Should Operators Have?

Given that an operator interface’s features set the boundaries of what
operators can do with a test system, how much access to the test system do
you want any given user to have? For example, an operator interface could
let troubleshooters access a list of frequent failures and their causes.
However, you may or may not want to let troubleshooters edit that database.

In general, you should allow as much access as operators need to do their
jobs but probably no more than that. Instead of expecting operators to
remember which features tot use, you probably should create a specific
operator interface for each kind of user. Or, you could create a single
interface with multiple personalities and display only one of those
personalities at a time.

Makethe Layout L ogical

When laying out visual elements and controls, it helps to group related items
and arrange them in a logical flow of tasks. Not only does this make it easier
for operators to identify relationships, but it also reduces eye movement and
hand movement when using a mouse. Also, try to group no more than five to

Customizing the Operator Interface
About Operator Interfaces

seven items at a time because that works best for retention from short-term
memory. An example is shown below.

Dothis... Instead of this...
~ Testplan Information Testplan Name | ~]
Mame I LI Testplan Wariant | ;l
variant | = UUT Name | -]
~UUT Infarmation ULIT Serial # |
Name | =l System Status |
Serial # | UUT TestResult |

Last Test Time |

~ Status Information

System Status Il Average TestTimel

UUT TestResult |
Last TestTime | # Failing Modules |

Passing Modules |

Last Test Time |

Last Test Time |

Passing Modules |
Failing Modules |

If your user interface must present alarge number of features or a great deal

of information, consider grouping the groups of itemsinto additional group.

Or, sidestep the problem with “information overload” by layering the
information onto tabbed dialog boxes similar to the way in which the right
pane of HP TestExec SL's Testplan Editor window is organized.

If your operator interface contains a series of tasks for operators—i.e.,
specify a part number, specify a run number, specify which testplan to use,
press the Start button, etc.—make those tasks flow according to the user’s
expectations. Often, that expectation will be set by the user’s reading habits.
For example, people who read in English read from left to right and from top
to bottom. Thus, by default they tend to assume that a form “starts” at the
upper-left corner and “ends” at the lower-right corner, as shown below. If

Customizing the Operator Interface
About Operator Interfaces

you follow this model when designing an interface for English-speaking
operators, its users already will know something about using it.

Start

eye movement

Finish

If your intended audience is likely to assume a different model, then design
the operator interface to match their assumptions.

Interacting With Operators

Overview

An effective operator interface provides its users with useful status
information. For example, isthetest system running or halted? What should
the operator do next? How much progress has been made on the current
task?

Providing Useful Prompts & Satus I nformation

Ideally, your operator interface should prompt users when they need to do
something, and provide status information at all times. For example, if

testing is stopped the prompt might be “Press the Start button to begin
testing.” If a test is running, you could display a message that says
“Testing... Please wait” so operators will know what is happening and what
is expected of them.

Another possibility it to combine status and prompt information directly on a
button. For example, you could include the name of the UUT on the Start
button and label the button “Start testing XYZ,” where XYZ is the type of
UUT. Once testing begins, you could reprogram the button’s label to read
“Testing XZY... Press to abort.”

Do this...

Customizing the Operator Interface
About Operator Interfaces

Minimizing Visual Clutter

To reduce visual clutter—i.e., the presence of too many seemingly random
elements on the screen at one time—you may want to reserve a region of the
operator interface to display status messages, such as in a status bar at the
bottom of the form. That way, operators always know where to look for
status information.

1
| Testing... Please wai

Progress indicators, such as counters or graphical bars, are another useful
way to keep users informed of what the test system is doing. This is
especially true if there are other tasks that users could be doing while they
wait for lengthy testplans to finish.

Progress

Adding a status bar or a progress bar can be as simple as dropping in a
control provided with a programming environment, such as Visual Basic,
and writing code that interacts with that control.

Making M essages Clear

When displaying messages for users, make them direct and precise. When
offering choices, make it clear what the choices are and what they do.

Instead of this...

! ! A power supply failed during testing. Do you wish to quit? ! : Quit?

Notice the differences between the two message boxes above. Without
providing any information, the box on the right asks if the operator wants to
quit. But which is the correct answer, OK or Cancel? Does OK mean it is
okay to continue or okay to quit? Does the Cancel button cancel running or
cancel quitting?

Do this...

Customizing the Operator Interface
About Operator Interfaces

In contrast, the message box on the left provides information about why the
box appeared and clear choices for what will be done if the operator presses
abutton.

Preventing Common Errors Before They Occur

Where possible, you should design the operator interface to prevent common
errors as operators interact with it. For example, suppose operators need to
specify the part numbers of UUTSs prior to testing them. Instead of having
operators enter the number via a keyboard, which is prone to error, you
could provide a predefined, drop-down list on the operator interface or use a
bar code reader to automate the process.

Do this... Instead of this...

selectthe part number |5673 vI Type the part numberl

dal=ris]

S45E :

Another variation on the above is to let operators choose from predefined
buttons instead of typing aresponse. Not only does this improve accuracy,
but it usually is faster because it requires fewer actions. An exampleis
shown below.

Instead of this...

What doyou want to do with the failing module? “What do wou want o do with the failing madule?
@ Petest 1 = Retest
~ Scrap ok | 2 = Scrap o |

) Send to Repair

3= 3endto Repair

Function Code: Il_

Using Shortcutsto Accommodate Different Syles

Some operators may find using a mouse convenient, while others—
especially those with typing skills—may prefer using a keyboard. Because
they provide keyboard equivalents for mouse commands, you may want to
use shortcuts called “keyboard accelerators” to accommodate both
preferences.

Customizing the Operator Interface
About Operator Interfaces

The Windows convention is that controls whose titles contain an underlined
character can be operated by pressing the Alt key while typing the
underlined character. The example below shows that the keyboard shortcut
for the Start button is Alt-S.

Start

Another useful shortcut for those who prefer using akeyboard isto take
advantage of the “tab order"—i.e., the order in which the cursor advances
from one control or field to the next when the Tab key is pressed—that most
programming environments let you specify when designing forms. Specify a
tab order that matches the logical progression of tasks done in the operator
interface.

What About Multiple Languages?

It may be desirable for your operator interface to support multiple languages.
If so, you must decide whether to have a separate version of the operator
interface for each language or a single operator interface whose appearance
varies according to whichever language option is chosen for it.

Be aware that most text grow longer when translated from English to other
languages. This means that if you develop operator interfaces for the English
language, you probably need to allow for the expansion or contraction of
text in labels or messages if they will be used with other languages. The list
below shows the approximate size of a typical, nontechnical paragraph of

English text translated to various languades.

Language Size Comparison with English (100%)
Arabic 88%

Chinese 61%

Czech 117%

Dutch 128%

Esperanto 93%

1. Source: George Sadek and Maxim Shukov, Typography Polyglot, New
York: The Cooper Union, 1991

10

Customizing the Operator Interface
About Operator Interfaces

Farsi 100%
Finnish 104%
French 111%
German 109%
Greek 129%
Hebrew 83%

Hindi 91%

Hungarian 113%
Italian 110%
Japanese 115%
Korean 124%
Portuguese 110%
Russian 116%
Spanish 117%
Swalhili 89%

Swedish 96%

What About Testing the Operator Interface?

Ultimately, the users of atest system will demonstrate how effectively your
operator interface is designed. Often, you can reduce your overall effort by

getting operatorsinvolved early. If possible, discuss their needs and

expectations, and ask them to evaluate an informal prototype—such as a
sketch on paper—of your proposed operator interface. Remember that time
spent designing a useful operator interface may very well be time saved
reworking an ineffective design later.

11

Customizing the Operator Interface
About Automation Interfaces

About Automation I nterfaces

What isan Automation I nterface?

An automation interface is a variation on an operator interface that has
features to support a partially or fully automated production line. The
general approaches to production automation supported by HP TestExec SL
are:

» Centralized, in which a central computer controls the entire production
line.

« Decentralized, or “peer-to-peer,” in which each machine in the
production line is responsible for its own part of the process, performing
a simple “hand-off” to the next machine when the current task finishes.

Depending on your specific hardware and production environment, you
probably will use one of the following communication paths for the
automation interface:

* RS-232 serial interface port used to communicate with a bar code reader,
other automation devices, or a central computer for control or for
gathering datalogging information.

» Digital I/0 card for controlling relays and reporting the status of switches
and sensors.

* LAN interface by some chosen communications protocol.

A Typical Scenario for an Automation I nterface

One example of how HP TestExec SL could operate as part of an automation
system is:

1. The HP TestExec SL system, under control of an automation interface,
waits for notification that a UUT has been placed on the tester fixture and
is ready to test.

12

Customizing the Operator Interface
About Automation Interfaces

2. The automation interface receives notification that a UUT isready and
receives aUUT identifier (usually aseria number scanned by a bar code
reader).

3. Theautomation interface calculatesfrom the identifier what type of UUT
is present and which testplan the UUT requires.

4. If thetestplan is not already loaded or if a different testplan is required,
the automation interface loads the correct testplan.

5. The automation interface runs the testplan.

6. The automation interface determines the test results, including whether
the UUT passed, failed, or caused a system exception.

7. The automation interface passes information to the automation system
(whether that isa central computer or the next piece of automation
equipment in the production line). This could include pass/fail
information, repair ticket information, or datalogging information.

8. Theinterface waitsfor the next UUT to test or for asignal to shut down
the test system.

What Tasks Does an Automation Interface Do?

Potential automation tasks you should keep in mind when designing an
automation interface include:

« Displaying the system status to the user interface.

« Handling Windows-related events, such as any operator input by
keyboard or mouse.

« Synchronizing testing activities with automation events, such as “UUT
ready for test” or “UUT test complete.”

« Obtaining board identification and type and use this information to
determine which testplan to run.

« Notifying automation equipment of the test outcome (pass, fail, or error).

» Recovering from errors that occur during automated testing.

13

Customizing the Operator Interface
Testing & Debugging an Operator Interface

Testing & Debugging an Operator |nterface

How Should | Test and Debug an Operator |nterface?

Thorough testing of an operator interface requires that you test every

possible interaction between the operator interface and HP TestExec SL.

This includes testing both HP TestExec SL's responses to actions initiated by
the operator interface, and the operator interface’s responses to events
triggered by HP TestExec SL. For example, if you press the Run button on
an operator interace you expect HP TestExec SL to begin running the
currently loaded testplan. Also, if a testplan finishes running you expect to
see a change in the status of the operator interface, such as a message to
show whether the testplan passed or failed.

Testing how an operator interface handles errors is another aspect of testing
and debugging. For example, an operator interface should not lock up if an
instrument “times out” during testing. Also, an operator interface should
handle typical errors such as a missing or incorrectly named testplan either
through error checking or through careful design to prevent the errors from
occurring.

Using Sample Actionsto Exercise an Operator Interface

HP TestExec SL provides an easy way to rapidly construct simple testplans
for exercising the functionality of an operator interface. Directory

“<HP TestExec S home>\samples\uidebug” contains a basic set of action
definitions and their matching DLL that you can use to create passing and
failing tests, raise exceptions, and more. For more information about the
actions, use the Action Definition Editor or the Testplan Editor window to
browse their descriptions.

14

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Note

Note

Operator Interfaces Created in Visual Basic

The sample operator interface provided with HP TestExec SL that is created
in Visual Basic has some automation features built into it, while the sample
operator interface created in Visual C++ does not.

We recommend that you do not simultaneously run an operator interface
created in Visual Basic and the Test Executive environment used to develop
testplans. Running both at once can cause unpredictable behavior, conflicts,
and loss of data.

15

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

What isthe Standard Operator Interfacein Visual
Basic?
The sample operator interface created in Visual Basic 6., which is shown

below, provides a useful example for use as-is or with minimal
customization.

I T - |
2¢ HP TestExec SL
| Empt‘y Empty
| e
o A
|
r A
Tl i
o | e =] o |
[N |

By default, it supports a bar code reader inserted inline with the keyboard

cable. It also supports other peripherals and options via configuration

settings described later under “Changing the Configuration of an Operator
Interface.” You can find the code for the sample operator interface’s project
in directory “<HP TestExec 9L
home>\samples\visualbasic\operatorinterfaces\typical”. A compiled,
executable form of the operator interface resides ldP*“FestExec SL
home>\bin\typicalopui.exe”.

16

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

You can find the code for an even simpler operator interface in directory
“<HP TesteExec S home>\samples\visualbasic\operatorinterfaces\simple”.
The simple example is a good tool for learning about operator interfaces but
lacks the range of features and error handling needed in a real application.

How Much Visual Basic Do | Need to Know?

The topics in this section assume you are familiar with:

« Visual Basic 6« terminology and concepts, such as events, methods,
properties, and event-driven programming

» Visual Basic 6¢s integrated development environment, or IDE, which
provides the tools used to create, edit, and debug programming projects

¢ The use of ActiveX™ controls with Visual Basix®6.

If your experience with Visual Basic is limited, you probably will want to
begin with simple customization tasks, such as changing the appearance of
an operator interface but not changing its underlying functionality. This will
help you become familiar with Visual Basic and with the sample code
provided with HP TestExec SL. As your proficiency with both grows, you
can begin doing more extensive customization tasks.

If you are new to Visual Basic programming, we recommend that you read
theProgrammer’s Guidavailable in Visual Basic’s online help.

How Does Visual Basic I nteract with HP TestExec SL ?

Operator interfaces created in Visual Basic use a special HP TestExec SL
ActiveX control to interact with HP TestExec SL. As shown in the diagram
below, code written in Visual Basic does the following:

|t calls the control’s methods to cause actions to occur, such as using the
Run method to begin running a testplan.

« It uses the control’'s properties to set or return attributes associated with
HP TestExec SL, such as using et aLogDi r ect or y property to
set or return the path used when datalogging during testing.

17

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

« It responds to events triggered by HP TestExec SL, such as the
Af t er Test pl anSt op event that indicates a testplan has finished
running.

properties

Visual Basic code
HP TestExec SL HP TestExec SL methods — in operator

ActiveX Control interface
events —p

What isInsidethe HP TestExec SL Control?

The HP TestExec SL Control is an automation object that contains additional
automation objects and collections of automation objects. The hierarchy of
internal objects and collections of objects is shown below.

TestExecSLn |
{ RegisteredTestplans H RegisteredTestplan | = collection
= object

{ RegisteredUUTs H RegisteredUUT |

—I SymbolTables H SymbolTable H Symbols H Symbol

% Security |

{ Testplan |
—| Tests H Test H Testparms H Symbol
—| Preference H TopologyFiles H TopologyFile |
{ Revision |
—| History |
—| Variants |

Note The properties of the HP TestExec SL control’s internal objects do not

appear in Visual Basic's Properties window. You must browse the control’'s
online help or use Visual Basic’'s Object Browser to find descriptions of its
internal objects and their properties and methods. Also, you can see them
used in the sample operator interface provided with HP TestExec SL.

18

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Visual Basic’s Auto List Members feature provides an easy way to use the
internal objects without having to remember their properties and methods.
As shown below, when you type a period after the name of an object, a list of
the object’s properties and methods appears in Visual Basic.

(General) j I{I]enlara‘tiul
TestExec3Ll.Testplan.
= ishor Pa
=% ClearReport
=% Continue o

B CurrentTestCount

& CurrentTestExecuting

g5 Description

g5 EnableStandardReporting -

Here, the list for the Testplan object is shown. Among its other attributes are
an Abort method and a CurrentTestCount property.

Adding the HP TestExec SL Control to a Project

Assuming that HP TestExec SL is installed on your system, you can do the
following to add the HP TestExec SL control to your project:

1.

2.

Open an existing or a new project in Visual Basic

Choose Project | Components in Visual Basic’s menu bar.

. When the Components box appears, be sure its Controls tab is selected.

Choose the Browse button and locate the HP TestExec SL control, which
is in file “txslctl.ocx” in directory “HP TestExec S home>\bin”. When

19

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

thisfileis selected, the HP TestExec SL control will appear in thelist of
controls, as shown below.

Controls | Designersl Irzertable EII::iectsI

[\ IMDOY S, Syskem 32 SMTHLP 32, Qi ﬂ
HP TestExecSL Activer Contral Library
[[IMarquee Conkral Library |

5. Choose the OK button.

Once the HP TestExec SL control appears in Visual Basic’s Toolbox, you
can use the mouse to place it on a form as you would any other control.
When copied onto a form, the control looks like this:

&, Project] - Form1 [Form])
[m] [m]

Note As shown below, you probably will want to set the HP TestExec SL control’s
Vi si bl e property toFal se to keep the control from appearing at runtime.

Properties - TestExecSL1
|TestExecsLl TestExecsl -]

#lphabetic Categurizedl

Top 120 -
-
hatsThisHelpID 0O -

20

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Getting Online Help for the Control

You can invoke online help for the HP TestExec SL control by selecting the
control when it appears on aform and then pressing softkey F1.

Finding Itemsin Operator Interface Code

Given that the predefined operator interface provided with HP TestExec SL

will contain agreat deal of unfamiliar code at first, how can you find items

of interest? Visual Basic’s Find feature (Edit | Find) makes it easy to locate
specified text in Visual Basic projects. The example below shows the Find
feature being used to find occurrences of varigbleanguage in the

current code module.

Findwhat: |aulanguage | [Find Hext
Search ————
 current Procedure Direction: I.ﬁ.ll 'I Cancel
& Current Module ¥ Find Whole Word Only:
Replace. ..
= Current Project [Match Case
O Selectad Text [T Use Pattern Matching Help

Similarly, you can search (and replace, if desired) within the scope of a
procedure, a module, a project, or a selected region of code.

What isthe Minimum Operator Interfaceto Run a
Testplan?

Running a testplan from an operator interface created in Visual Basic
requires nothing more than adding the HP TestExec SL control to Visual
Basic’s toolbox (see “Adding the HP TestExec SL Control to a Project”),
copying an instance of the HP TestExec SL control onto a form, and writing
two lines of code.

21

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Writing the Code for a Minimal Operator Interface

The default name of the first instance of the HP TestExec SL control is
“TestExecSL1". Given that, the minimum code needed to load and run a
testplan named “MyTestplan.tpa” looks like this:

Form j ILuad

Private Sub Form Load()
TestExec3Ll.LoadTestplan ("o’ Testplans' MyTestplan. tpa™)
TestExec3Ll.Testplan.Run

IEnu:il Sub

When the form that contains the control is loaded, the control’'s

LoadTest pl an method is called and passed the pathname of an existing
testplan to load. After the testplan has been loaded, a callRothmethod
associated with the control®est pl an object runs the testplan.

Why the Minimal Operator Interfaceis Not Enough

Although the example above works, it provides very limited functionality.

For example, there is no error trapping routine to handle a simple problem
like not finding the testplan at its specified location. Also, this operator
interface provides no pass/fail status information, nor does it let the operator
load and run a different testplan, or even the original testplan a second time.

Note

Despite the minimal operator interface’s lack of features, it can be a useful
tool for learning about the HP TestExec SL control. For example, you could
have the minimal operator interface run a testplan containing a single action
that displays a message box to indicate that the testplan is running. Then you
could add Run and Stop command buttons to the operator interface, add a
text box to display the testplan’s status, etc.

The more extensively you customize operator interfaces, the better you need
to understand the HP TestExec SL control's methods, properties, and events
S0 you can use them programmatically. Also, you need to understand the
various “states” of execution through which HP TestExec SL moves. States,
methods, and events are described in more detail below.

22

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Understanding the HP TestExec SL Control's States &
Methods

Asit loads, runs, and unloads testplans, HP TestExec SL moves through

various “states” of execution identified by boxes in the diagram below. Each
box contains one or more states; e.g., the first st¥eTigst pl an, the

second isTest pl anNot Run, and the third iFest pl anRunni ng.

>

NoTestplan
LoadTestplan (forces LoadTl&sth an
UnloadTestplan) ¢

TestplanNotRun

Run or

—Pa— Sepor j

Continue

Run or Sep or Continue

TestplanRunning

Run to

breakpoint
v v v

TestplanPaused Run to
TestplanBreakPoint Stop or Abort completion
TestplanStepPause

I
Stop or Abort

TestplanError
TestplanAbort
TestplanStopped
TestplanPassed
TestplanFailed
TestplanException
TestplanUnhandledException

LoadTestplan (forces

UnloadTestplan)

23

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

HP TestExec SL moves from one state to another by either the normal
sequence of execution or by calling methods in the HP TestExec SL control.
For example, calling the LoadTest pl an method causes HP TestExec SL
to load atestplan and move from the NoTest pl an state to the

Test pl anNot Run state. The names of methods are italicized in the
diagram.

Some boxes contain more than one state. For example, the fourth box from
the top contains Test pl anPaused, Test pl anBr eakPoi nt , and
Test pl anSt epPause. This meansthat any of these statesis possible at
this point in the flow of testing.

Which state actually occurs depends upon how this point is reached. For
example, calling the Paus e method whileinthe Test pl anRunni ng
state movesto the Test pl anPaused state. Similarly, single-stepping
whileinthe Test pl anRunni ng state movesto the

Test pl anSt epPause state because HP TestExec SL pauses after each

step.
The associ ations between related states and methods are easy to identify

because of the similaritiesin their names. For example, if HP TestExec SL is
inthe Test pl anRunni ng state, then:

» Calling theSt op method moves to thEest pl anSt opped state
e Calling theAbort method moves to thEest pl anAbor t ed state

Notice the three labels that are underlined in the diagram: Stehingo
breakpoint and_Run to completionnstead of being methods, these are
normal paths of execution that result in movement from one state to another.
For example, if a testplan executes without the number of failing tests

exceeding the specified linjtit moves from thdest pl anRunni ng
state to th@est pl anPassed state.

Also notice the two cases in which calling ttmadTest pl an method
causes an automatic call to ttel oadTest pl an method because the
current testplan must be unloaded before loading a different one. These

1. This limit is set by the “Halt on failure count” feature on the Execution tab in
the right pane of HP TestExec SL's Testplan Editor window.

24

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

occur when moving from Test pl anNot Run to NoTest pl an and from
any of the statesin the lowermost box to the NoTest pl an state.

In some cases, any of several methods can cause movement from one state to
another. For example, caling either the Run, St ep, or Cont i nue method
causes movement from the Test pl anNot Run stateto the

Test pl anRunni ng state.

You can learn the current state of testing by examining the value of the
HP TestExec SL Control'St at e property. For more information, see the
description of theéSt at e property in the online help for the control.

Understanding the HP TestExec SL Control’'s Events

The Two Levels of Events

The HP TestExec SL control can trigger two levels of eventsin response to
changes of statein HP TestExec SL. Thefirst type is testplan-level events
that are global to atestplan and always enabled, which means they

potentially trigger each time atestplan is run.> The second level is test-level
events, whose scope isindividual tests and whose triggering you can enable
or disable programmatically.

Why have two levels of events? Testplan-level events et an operator

interface respond to major changes in a testplan’s status. They provide useful
status information without significantly slowing testing. On the other hand,
test-level events provide a greater level of resolution but at the expense of
increased testing time.

Events Associated with Testplans

At various points when HP TestExec SL moves from one state of execution
to another, the HP TestExec SL control triggers events you can use to
execute routines written in Visual Basic. For example, there is an

Af t er Test pl anPause event for which you could write code to change a
status message in an operator interface from “Running” to “Paused” in

1. We say “potentially” because not every event will necessarily trigger each
time a testplan is run. For example, an event that triggers when the testplan
pauses will not trigger unless the testplan is deliberately paused. However,
all of these events are enabled to trigger at the appropriate time.

25

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

response to a call to the Pause method, upon reaching a breakpoint set in
the testplan, or while single-stepping. The diagram below shows
testplan-level events as arrows with double heads that are hollow.

TestplanPassed
TestplanFailed
TestplanException
TestplanUnhandledException

aonio®
- e’
NoTestplan
| eTﬁp\aﬂLo
LoadTestplan (forces | gaqTestplan <Bé‘°‘
UnloadTestplan) * fterT,
Nl gy
TestplanNotRun
Run or Reoof\
7 Sepor Run or Sep or Continue . gec\esa‘
Continue j ¢ - o
- =—— ReportMessage —>>
TestplanRunning BefOreT
&y
—> various 0B esin
— test-level events RAN
Pase Sieppig R0
breakpoint pPause
v v afterTesp
TestplanPaused Run to
TestplanBreakPoint Stop or Abort completion
TestplanStepPause
I
Stop or Abort AfterT es‘p\anstop
TestplanError Reportl\/l&mge
TestplanAbort
TestplanStopped

LoadTestplan (forces

UnloadTestplan)

26

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Listed in aphabetical order, the testplan-level events are:

AdviseClearReport

AfterTestplanLoad

AfterTestplanPause

AfterTestplanStop

AfterTestplanUnload

BeforeTestplanBegin

BeforeTestplanLoad

ReportMessage

Indicates that report output is being cleared at
the beginning of a run of the testplan. Typically
triggers once at the beginning of a run of the
testplan, even if the testplan will loop.

Indicates that a new testplan has successfully
been loaded.

Indicates that HP TestExec SL has entered a
paused state, and returns the reason why the
testplan paused.

Indicates that HP TestExec SL has halted, and
returns the reason why the testplan stopped.

Indicates the testplan has been unloaded.

Indicates that a pass through the testplan
sequence is about to begin. Also occurs when
testplan execution resumes via calling the
Continue method.

Triggered in response to a LoadTestplan
method.

Indicates a new "block" of report output has
arrived.

You can find detailed descriptions of these events in the online help for the

HP TestExec SL control.

Notice that some states have more than one event associated with them. For
example, the Test pl anRunni ng state hasthe Advi seC ear Report,
Report Message, and Bef or eTest pl anBegi n events associated with
it. When there are multiple events, the eventstrigger in the order shown

from top to bottom.

Most callsthat cause a transition from one state to another return
immediately; i.e., they are non-blocking. This means that in most cases you
can think of testplan-level events as triggering immediately after the call.

27

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

For example, calling the Run, St ep or Cont i nue methods immediately
triggersan Advi seCl ear Report method just prior to moving

HP TestExec SL from the Test pl anNot Run stateto the

Test pl anRunni ng state.

The LoadTest pl an method is an exception to the above. When called, it
blocks until its action is complete. This means that the

Bef or eTest pl anLoad and Aft er Test pl anLoad eventstrigger in
the order shown sometime during the call to LoadTest pl an, but before
HP TestExec SL entersthe Test pl anNot Run state.

Events Associated with Individual Tests

About Test-L evel Events

Test-level events are triggered as the status of testing changes from test to
test within atestplan. As shown in the expanded view of the
Test pl anRunni ng state below, test-level events are associated with the

28

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

beginning and end of individual tests during the Test pl anRunni ng state
of execution.

Run or Sep or Continue

TestplanRunning

BeforeTestBegin —>D>

Testl o
ReportMes®
A
fterTeStDOn o
BeforeTestBegin —>>
Testn .y
ReportMes?

| |
] Run to
Patise ﬁ‘i‘mg break*goi nt

——

Listed in aphabetical order, the test-level events are:

AfterTestDone Triggered after the current test finishes
executing.

BeforeTestBegin Triggered before the next test in the testplan
begins executing.

ReportMessage Indicates a new "block" of report output has arrived.

By default, test-level eventsare disabled. You enablethe Af t er Test Done
and Bef or eTest Begi n events by setting the value of the

Test Event sEnabl ed property in the HP TestExec SL control to Tr ue.

Thisletsthe code in an operator interface or automation interface take some
kind of action before and after the running of each test.

29

Caution

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Thetest-level Repor t Message eventstrigger under either of the
following conditions:

» Passing or failing tests occur and the value oRygor t Pass and/or
theReport Fai | property in the HP TestExec SL control is set to True

« An exception occurs and the value of Repor t Excepti ons
property in the HP TestExec SL control is set to True

Enabling test-level events slows testing because it takes time to process
events and broadcast them to their recipients. Thus, you probably will not
wish to use test-level events when testing times are short or when timing is
critical.

You can find detailed descriptions of these events in the online help for the
HP TestExec SL control.

Miscellaneous Events

The HP TestExec SL control provides a couple of additional, asynchronous
events that do not fall into the category of testplan-level or test-level events.
They are:

AdviseUpdate Triggers to let the operator interface
update its display in a way that does not
interrupt the critical timing of a testplan.

UserDefinedMessage Triggers to notify the operator interface
that a user-defined message has
arrived.

You can find more information about these events in the online help for the
HP TestExec SL control. Also, see “Understanding User-Defined Messages”
for more information about user-defined messages and “Miscellaneous
Notes” for more information about using thévi seUpdat e event.

30

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Using the HP TestExec SL Control’'s Events

As shown below, once you have created an instance of the HP TestExec SL
control on aform,! you can:

1. Use the Object box in Visual Basic’s Code window to choose the name of
an instance of the HP TestExec SL control.

2. Use the Procedure/Events box to choose a specific event and add its
declaration to the form.

3. Write code to implement what happens when the event is triggered.

An example of doing this is shown below..

1. Choose an instance of the control 2. Choose an event

M Project] - Form1 [Code]
estExEt:SL"l N j AfterTestplanLoad j

Private Sub TestExecSL1 After diseCIearRepnrt -

'"Four code goez here...

End Sub \

Under standing User-Defined M essages

AN
‘EAfterTestlanLuad_

3. Write implementation code for the event

Why Pass I nfor mation Between Processes?

An operator interface written in Visual Basic executes apart from
HP TestExec SL, which means that it and HP TestExec SL reside in separate
processes. Interaction between these processes is handled by the

1. The sample operator interface provided with HP TestExec SL has the control
on “frmMain”.

31

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

HP TestExec SL control, which passes messages back and forth. Examples
of the kinds of message passed include:

» Messages that originate in HP TestExec SL and cause the triggering of
events in the HP TestExec SL control in Visual Basic

» Messages that originate in Visual Basic and are sent to HP TestExec SL
when you call methods in the HP TestExec SL control

Because the HP TestExec SL control passes these messages in a predefined
manner, you are not necessarily aware of them. Nor do you need to know
anything about their contents. All you see is the results.

But what happens if you need to pass information between processes and
none of the predefined messages—i.e., the HP TestExec SL control's events
and methods—is appropriate? For example, suppose you need to:

« Have an action written in C that is executing in a testplan in HP TestExec
SL invoke a dialog box in an operator interface written in Visual Basic,
and

» Wait for a "Yes/No" response from the operator of the test system, and
« Return the operator’s reply to the action.

However, the HP TestExec SL control has no “Display a dialog box and wait
for a reply” event, nor does it have a “Return a reply from the dialog box”
method.

Passing I nformation Between Processes

Instead of providing a large number of very specific predefined functions,
events, and methods to pass information between processes, HP TestExec
SL supports a more flexible approach called “user-defined messages.” At a
conceptual level, user-defined messages work like this:

« A call to the appropriate API function or method broadcasts a
user-defined message to potential listeners. Besides containing data, the
message contains an identifier that identifies what kind of message it is.
For example, you might choose a convention that defines an identifier of

32

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

5 for messages sent from an action to an operator interface that mean
“display a dialog box.”

Potential listeners receive various user-defined messages. In each case,
they evaluate the message’s identifier to decide if the message is of
interest. Continuing with the example of a message whose identifier is 5,
when the operator interface receives a message whose identifier is 5, it
displays a dialog box in response. When the operator interface receives
other messages whose identifiers are not 5, it either ignores them or takes
some other action appropriate for their identifiers.

33

Customizing the Operator Interface

Operator Interfaces Created in Visual Basic

You use the following functions, events, and methods to send, receive, and

respond to user-defined messages.t

Functions for use in code writtenin C 2

UtaSendUserDefinedMessage()

UtaSendUserDefinedQuery()

UtaSendUserDefinedResponse()

AdviseUserDefinedMessage()

An API function used in actions to
broadcast a message to all potential
listeners and does not wait for a
response

An API function used in actions to
broadcast a message to all potential
listeners and wait for a response

An API function used in actions to
respond to user-defined messages

A function used in hardware handlers
to respond to user-defined messages

a. With the exception of AdviseUserDefinedM essage(), these functions are
part of the C Action Development API.

Events and methods for use in code written in Visual Basic

SendUserDefinedMessage

SendUserDefinedQuery

SendUserDefinedResponse

UserDefinedMessage

Method that broadcasts a message to
all potential listeners and does not wait
for a response

Method that broadcasts a message to
all potential listeners and waits for a
response

Method that responds to a
user-defined message broadcast by
SendUser Def i nedQuery

Event that indicates a user-defined
message has arrived

1. See “User-Defined Messages Reserved by Hewlett-Packard” for information
about the range of message identifiers reserved for use by Hewlett-Packard.

34

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Notice the parallels between the names and functionality of the functions
and methods listed above. The C Action Development API has a set of
functions that follow its conventions, and the Visual Basic environment its
counterparts. Although you typically broadcast user-defined messages from
one environment and listen or respond from ancther, there is nothing to
prevent sending and receiving user-defined messages in the same
environment.

Consider the following example of how a user-defined message might work.

HP TestExec SL

MyTestplan

MyTest | Operator Interface

MyAction

UtaSendUser DefinedMessage() == broadcast = User DefinedMessage() ¢===p| Text Box
|

Here, an action in atest executing in atestplan running in HP TestExec SL
broadcasts a user-defined message to an operator interface, which then
displays the message in atext box if the messageis of interest.

35

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

The pertinent code to do thisinside an action routine, which usesacall to the
Ut aSendUser Def i nedMessage() function, might look like this:

/!l Code in action routine witten in C...
Ut aSendUser Def i nedMessage(5, "Hello froman action!");
/!l More code in action routine...

The code in the operator interface written in Visual Basic might implement
the User Def i nedMessage event, which responds to user-defined
messages, like this:

'Code in operator interface written in Visual Basic
Private Sub TestExecSL1_UserDefinedMessage (ID As Integer, TextBlock _
As String)
Select Case ID’Evaluate the identifier
Case 5 'The message is of interest
txtMyTextBox.Text = TextBlock
Case Else 'The message is not of interest
Exit Sub
End Select
End Sub

Besides evaluating | D, you could evaluate the message contained in
Text Bl ock. For example, you could have | Didentify ageneral class of
messages, and Text Bl ock to carry the data associated with a specific
message, as shown next.

// Code in action routine written in C...
/l An ID of 2 is a pass/fail status message for a voltage measurement
if (Voltage > 5)
UtaSendUserDefinedMessage(2, "passed");
else
UtaSendUserDefinedMessage(2, "failed");
// More code in action routine...

36

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

'Code in operator interface written in Visual Basic...
Private Sub TestExecSL1_UserDefinedMessage (ID As Integer, TextBlock _
As String)
Select Case ID’Evaluate the identifier
Case 2 'The message is of interest
If (TextBlock = "passed") Then 'Evaluate the TextBlock
txtTextBox.Text = "Voltage test passed"

Else
txtTextBox.Text = "Voltage test failed"
Exit Sub
End If
End Select
End Sub
Similarly, Text Bl ock could contain other readable text, numeric data, or
even patterns of bits for evaluation. Instead of writing a string to a text box,
the code in the operator interface could do other tasks requested by action
code executing in HP TestExec SL.
Note Animportant concept to understand about user-defined messagesisthat they

are broadcast to one or more potential recipients, or “listeners,” who must
parse the messages to decide if their contents are of interest.

All of the examples so far have broadcast a message with no regard for
whether the message was received or acted upon. Another variation on
user-defined messages, which is shown below, lets you use the

Ut aSendUser Def i nedQuer y() function to broadcast a message to an
intended recipient, and wait a specified length of time for the recipient to
respond via a call to the HP TestExec SL control's

SendUser Def i nedResponse method.

HP TestExec SL

MyTestplan
MyTest | Operator Interface
MyAction — GUETY =] ,
UtaSendUser DefinedQuery() =t response=| SnduserDefinedResponse() =P Text Box
I
I

37

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

An example of code that doesthisis shown next.

/!l Code in action routine witten in C...

[/ IDis 4 and tineout value is 2 seconds

i f (UtaSendUserDefinedQuery(4, "Waiting for a response”, 2) != NULL)
...code that does sone task if response is received

el se
/| exceeded tinme-out value or an error occurred

/!l More code in action routine...

The code in the operator interface might respond to a user-defined query like
this:

'Code in operator interface written in Visual Basic...
Private Sub TestExecSL1_UserDefinedMessage (ID As Integer, TextBlock _
As String)
Select Case ID’Evaluate the identifier
Case 4 'The message is of interest & requires a response
TestExecSL1.SendUserDefinedResponse 4, "Received your query"
Case Else 'The message is not of interest
Exit Sub
End Select
End Sub

Note You must use user-defined queries and responses as complementary pairs;
e.g., you cannot use the SendUser Def i nedMessage method to respond
to amessage broadcast by the Ut aSendUser Def i nedQuer y()
function.

The examples have shown user-defined messages and queries being sent

from code in actionsto operator interfaces, and user-defined responses being
sent from operator interfacesto code in actions, but the opposite is possible.
For an example, see “Accessing Hardware Resources from an Operator
Interface.”

Note You can find detailed descriptions of the C Action Development API
functions in Chapter 2 of theeference book and in HP TestExec SL's online
help. You can find detailed descriptions of the Visual Basic events and
methods in the online help for the HP TestExec SL control.

38

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

User-Defined M essages Reser ved by Hewlett-Packard

Hewlett-Packard has reserved numbersin the range of 10,000 to 99,999 for
predefined user-defined messages used in operator interfaces provided with
HP TestExec SL. If an existing message is appropriate for your use, feel free
toreuseit. If you add new messages, be sure to add them somewhere outside
the predefined range to avoid conflicts with operator interfaces from
Hewlett-Packard.

You can browse the code in “frmPreDefinedTxSLUserMessages” in the
sample operator interface for current definitions of the reserved messages.

Accessing Har dware Resour ces from an Operator
| nterface

Note For an overview of hardware handlers, which are mentioned in the topics
below, see “About Hardware Handlers” in Chapter 3 ofGb#ing Sarted
book. Also, see “Monitoring the Status of Hardware” in Chapter 2 of this
book.

When Do Operator Interfaces Access Har dwar e Resour ces?

Under what conditions does an operator interface need to access hardware
resources, such as an I/O port that controls equipment or returns status
information? Suppose that:

* You must have a safety shield in place before applying power to the
UUT. The shield probably will have a safety interlock switch or sensor
whose status your operator interface needs to know before it allows
testing to begin.

< You want operators to control testing by pressing large, mechanical
buttons marked Start and Stop on a separate “button box” near the test
system instead of via graphical buttons on the operator interface.

* You want your operator interface to control colored lamps or other
indicators that indicate the status of testing.

39

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

« Your operator interface needs to control automated equipment without
operators being present.

The alternatives when an operator interface written in Visual Basic needs to
interact with hardware in typical scenarios like these are:

» The Visual Basic code in your operator interface can directly interact
with hardware via an I/O strategy that is unique to the operator interface

e The Visual Basic code in your operator interface can interact with
HP TestExec SL, which in turn interacts with hardware via its standard
I/O strategy

For an operator interface written in Visual Basic, we recommend that you
adopt the latter approach via the support for hardware handlers that is built
into HP TestExec SL. See the sample code and “readme” file in directory
“<HP TestExec SL home\samples\automate” for an example of a hardware
handler that supports digital I/O operations.

Accessing the Har dwar e Resour ces

One way an operator interface can access hardware resources is by
broadcasting a user-defined query to a hardware handler that is monitoring
the status of hardware. Refer to the example below, which shows the code to
implement a Run button that verifies closure of a safety interlock switch
before testing begins.

"Code in operator interface witten in Visual Basic
Private Sub cmdRun_d i ck()

Answer = Test ExecSL1. SendUser Defi nedQuery 2, "", 5
I f Answer = "Yes" Then
...code that begins testing
El se
MsgBox "Pl ease close the safety interlock", vbOKOnly
End I f
End Sub

Clicking the Run button calls tteendUser Def i nedQuer y method,

whose associated code causes the operator interface to send a user-defined
query whose identifier is 2, which we will assume is defined as an inquiry
about the status of the safety interlock. If the query receives a valid response,

40

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

the response string is eval uated to determine the status of the safety
interlock, which is used to decide if testing can begin.

Asshown next, when the Advi seUser Def i nedMessage() functionin
the hardware handler receives the message, it evaluatesit, checks the status
of the safety interlock, and returns that status in a user-defined response to
the user-defined query sent by the operator interface.

/1l Code in hardware handler witten in C

voi d UTADLL Advi seUser Def i nedMessage(HUTAHWMOD hMbdul e,
HUTAPB hPar anet er Bl ock,
LPVA D pUser | ni t Dat a,
long I'I D)
LPCSTR | pszMessage)

{
if (11D==2)
...get status of switch via sone |/0O strategy
if (Switchd osed == 1)
(Ut aSendUser Def i nedResponse(2, "Yes");
el se
(Ut aSendUser Def i nedResponse(2, "No");
}
What About Concurrent Testing?

Note Thisis an advanced topic that explores the concept of concurrent testing but
does not fully describe how to implement it because the details can vary
extensively from system to system.

Note Concurrent testing, which runs multiple instances of HP TestExec SL—one

per UUT—is not the same as multi-UUT testing, which tests multiple UUTs
with a single instance of HP TestExec SL. Concurrent testing requires
multiple sets of hardware resources, such as instruments that provide stimuli
and measure responses, while multi-UUT testing lets you test multiple UUTs
with a single, shared set of hardware resources. Multi-UUT testing is
described in Chapter 10 of thising HP TestExec S book.

If desired, your operator interface can support concurrent or “parallel”
testing if you need to simultaneously test multiple UUTs. It does this by

41

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

running two or more instances of HP TestExec SL at once. During
concurrent testing, a single tesplan controls different sets of hardware
resouces via multiple instances of the HP TestExec SL Control. Thisis done
by having each set of hardware resources associated with its own switching
topology file for the "fixture" layer in the switching topology.

A simple example of code to run two, simultaneous i nstances of
HP TestExec SL is shown below. The example assumes that the associated
form contains two instances of the HP TestExec SL Control,

Test ExecSL1 and Test ExecSL2.1 Notice how each instance of the
HP TestExec SL Control has a unique topology file and directory for
datalogging files.

Private Sub Form Load()
"Set up & run first instance of testplan
Test ExecSL1. Test pl an. Pref erence. Topol ogyFil es("fixture").filename _
="c:\Testpl ans\ Fi xturel\fixturel.ust"
Test ExecSL1. Test pl an. Pref erence. Datal ogDirectory _

"c:\ Test pl ans\ Fi xturel”

Test ExecSL1. LoadTest pl an ("c:\ Test pl ans\ MyTest pl an. t pa")
Test ExecSL1. Test pl an. Run

"Set up & run second instance of sane testplan
Test ExecSL2. Test pl an. Pref erence. Topol ogyFil es("fixture").filename _

"c:\ Test pl ans\ Fi xture2\fixture2. ust"

Test ExecSL2. Test pl an. Pref erence. Datal ogDirectory _

"c:\ Test pl ans\ Fi xt ure2"

Test ExecSL2. LoadTest pl an ("c:\ Test pl ans\ MyTest pl an. t pa")
Test ExecSL2. Test pl an. Run

End Sub

Comprehensive implementations of concurrent testing can be complex if
you need to share hardware resources, such asinstruments. If you need to
share instruments or other resources, you must ensure that one instance of
HP TestExec SL does not conflict with the other. For example, both
instances cannot simultaneously use a single instrument to make a
measurement. Instead, your operator interface or instrument drivers must
implement a cooperative strategy for sharing resources.

1. You also could create a separate form for each instance of the HP TestExec
SL Control, perhaps via Visual Basic’'s multiple-document interface (MDI).

42

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

User-defined messages cannot communicate between instances of
HP TestExec SL.

Miscellaneous Notes

« If you set a breakpoint in Visual Basic when debugging an operator
interface, HP TestExec SL will not be aware of it. Because it is not aware
of the breakpoint, HP TestExec SL will continue to send events to Visual
Basic and those events will be lost as long as Visual Basic remains at the
breakpoint.

* Do not use a Visual Basic Timer control to interact with the HP TestExec
SL Control when the control is busy doing some task. As an alternative,
you may wish to use thdvi seUpdat e event, which triggers
periodically when the control is not busy. For more information about the
Advi seUpdat e event, see the online help for the HP TestExec SL
Control.

- Be aware that if code in your operator interface invokes a modal form,
such as a modal dialog box or a message box, you may lose events
triggered in the HP TestExec SL Control while the form is displayed. In
other words, the control keeps generating events even if code in the
operator interface cannot respond to them.

Changing or Enhancing Existing Functionality

Changing the Configuration of an Oper ator Interface

Module “modConfiguration” contains code that declares and defines the
initial values of configuration variables used throughout the code in operator
interfaces created in Visual Basic. See the code and comments in that
module for more information.

A Quick Way to Hide Existing Functionality

Suppose you wish to remove a command button or other control from an
operator interface to keep operators from using it. One way to remove the
control is to actually delete it from a form and, ideally, also remove the code
that implements its functionality. However, if you do this and later change

43

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

your mind, you must add the control again and replace the code you
removed.

A more benign aternative to removing a control isto simply make it
invisible at runtime by setting its Vi si bl e property to Fal se. If desired,
you also canresize it smaller and move it out of the way of other controls.
Thisway, you can easily reuse the control if your needs change.

If you actually remove acontrol instead of simply hiding it, be sure to search
for al references to that control in the code for the operator interface and
remove them as needed.

Controlling the Information That Appearsin Reports

Accessing the Default Information

Report information is accumulated by HP TestExec SL during testing. In the
Test Executive environment used to develop testplans, thisinformation
appears in the Report window, and you have the option of printing it. This
same report information also is potentially useful in operator interfaces
becauseit can be used to print status or repair tickets suitable for attaching to
UUTs.

By default, the stream of report information sent to an operator interfaceis
identical to that which appears in HP TestExec SL's Report window. As
shown below, all it takes to make this information appear in a text box is
several lines of code that define what happens wheReper t Message
event triggers at the end of a run of a testplan.

Private Sub Test ExecSL1_ Report Message(ByVal Message As String)

Note

’Assumes a text box name 'txtMyReportBox’ appears on the form.
'New message is appended to existing text to create a cumulative log
txtMyReportBox.Text = txtMyReportBox.Text & Message

End Sub

A RichTextBox automatically formats strings but a simple TextBox does
not. For example, a RichTextBox correctly handles embedded carriage
return/line feed charactersin messages. In contrast, a TextBox requires you
to format messages into individual lines by searching for these charactersin

44

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

substrings and processing them. Thus, it is usually advantageous to use a
RichTextBox when displaying report information.

Although the previous exampleis easy to understand, it is best suited to
handling small amounts of report information becauseit is slow. If you need
to work with alarger amount of report information, the example shown
below is much faster.

Private Sub Test ExecSL1 Report Message(ByVal Message As String)
’Assumes a text box name 'txtMyReportBox’ appears on the form.
'New message is appended to existing text to create a cumulative log
txtMyReportBox.SelStart = 2147483647 ‘Some large number <= MAXINT
txtMyReportBox.SelLength = 0
txtMyReportBox.SelText = Message

End Sub

What if Reports Need Additional I nformation?

While the default level of report information is useful in many cases, there
may be others where you wish to customize the report information that
appears. The easiest way to customize report information isto enhance it by
adding additional information to the default stream of information. While
you cannot add information within the default stream, you can easily add
supplemental information before or after the default stream, as shown below.

Your custom message

P~

Default Information

—7

Your custom message

45

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

A singleline of code can call the SendReport Message method and
specify the message to be sent, like this:

Test ExecSL1. Test pl an. SendReport Message "Here is ny custom nessage..."

You can call this event as needed from your operator interface. For example,
placing this call in the procedure for the Af t er Test pl anLoad event as
shown below would add your message to the beginning of the report stream
each time a new testplan was loaded.

Private Sub Test ExecSL1 After Testpl anLoad(ByVal Path As String)
Test ExecSL1. Test pl an. SendReport Message "Testplan " & Path & _
" was | oaded." & vbNewlLi ne
End Sub

And adding this message to the Af t er Test pl anSt op event asshownin
the following example would send your message to the end of the report
stream when atestplan finished.

Private Sub Test ExecSL1 After Test pl anSt op(ByVal Reason As _
HPTest ExecSL. Test pl anSt at e)
I f Reason = Testpl anPassed Then 'If testplan finished successfully
Test ExecSL1. Test pl an. SendReport Message "Test pl an passed at " & _
Ti me & vbNewLi ne
End I f
End Sub

Similarly, you can call SendRepor t Message from other events.

What if Reports Need Different Information?

If your need for report information differs greatly from the default, you have
two choices. You can:

» Selectively parse the existing stream of report information collected by
HP TestExec SL

» Ignore the default stream of report information collected by HP TestExec
SL, and instead accumulate your own data during testing and manipulate
it to provide report information

46

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Because the parsing of the existing report information can be quite complex,
we recommend that you adopt the latter approach. You can do this by:

» Turning off standard reporting by setting the value of the
St andar dRepor ti ngEnabl ed property to False, and

» Writing routines for the various events associated with the HP TestExec
SL Control, and

< Having those routines read the values of properties associated with
objects in the HP TestExec SL Control, and

« Sending the values directly to the operator interface, or manipulating the
values—to provided calculated values, perhaps—and then sending the
results to the operator interface.

Changing the Language

Which Languages Can | Use?

The language options built into the sample operator interface written in
Visual Basic are English, German, and Spanish. This support includes
multi-language captions for labels, such as those that appear on controls, and
status messages. If desired, you can add new messages or support for
additional languages but you must provide the message strings yourself.

Changing the Default L anguage

Changing languages is simple if the new language you wish to use is one of
those provided with the predefined operator interface, and if your operator
interface does not require additional controls or messages beyond those
already defined.

The value of a global variable namgdLanguage in module
“modConfiguration” determines which language is used; i.e., which set of
messages is used from an array of messages in various languages. To change
the default language, simply change the value of this variable. For example,
the entry that sets the default language to English looks like this:

guLanguage = Engli sh

47

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

To change the default language to Spanish, you would edit the entry as
shown below.

guLanguage = Spani sh

When changing languages you may need to resize the fields that display
label s and messages to accommodate their lengthened or shortened captions.
For more information about how text expands or contracts from language to
language, see “What About Multiple Languages?”

Switching Among the Built-In Languages

As described above, the value of a global variable nguednguage in
module “modConfiguration” determines which language appears in the
operator interface. If desired, you can dynamically change the value of this
variable and call a subroutine to refresh the captions of controls used in the
operator interface. For example, suppose those who use your operator
interface need the ability to switch between languages “on the fly” as shown
below.

. HP TesztExec SL Operator Interface

Chooze the language
@ Englizh

= Spanizh

The implementation code for the two OptionButton controls used above is
shown below.

Private Sub optEnglish _dick()
guLanguage = English 'Change the language
UpdateControlCaptions 'Update the control captions

End Sub

48

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Private Sub opt Spanish_dick()
guLanguage = Spanish 'Change the language
UpdateControlCaptions 'Update the control captions

End Sub

In asimilar fashion, you could switch languages based upon some other
means of identifying which language is required, such as associating a
specific language with each operator’s login.

How Does M ulti-L anguage Support Work?

Traditionally, supporting multiple languages in applications written in Visual
Basic has required using a separate resource compiler, such as the one
provided with Visual C++. However, the operator interface created in Visual
Basic that is provided with HP TestExec SL supports multiple languages
without using a resource compiler. It relies on an array of strings,
gsLangArr ay, in module “modLocalization” that contains sets of

messages in various languages. These messages determine the captions for
the labels that appear for buttons, text boxes, and such.

An excerpt from the declaration of the array’s contents looks like this:

guLanguage = Engli sh

... moreentries

gsLangArray(gnRun, gulLanguage) = "Run"
gsLangArray(gnRunl, guLanguage) = "&Run"
... more entries for the English language

guLanguage = Ger man

... more entries

gsLangArray(gnRun, gulLanguage) = "Laufen"
gsLangArray(gnRunl, gulLanguage) = "&Laufen"
... more entries for the German language

Notice how the definition for each message is repeated in both languages
shown. For example, the first entry in the set of English messages, “Run”,
has a corresponding entry named “Laufen” in the set of German messages.
Each string whose value is declared in the array corresponds to a label on a
control or a status message used by the operator interface.

Note You should duplicate these definitions line for line across the various
languages. For example, if the definition for the English language defines a

49

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

dozen strings—i.e., has a dozen lines of code in it—so should the definitions
for the other languages. Although you must specify a value for each string in
the default language, you have the option of specifying a null string (““) for
other languages. If you specify a null string for an entry, then the definition
of that entry in the default language will be used.

Where a simple label has a single entry associated with it, a command button
has two entries. For example, the “Run” button is defined as:

gsLangArray(gnRun, gulLanguage) = "Run"
gsLangArray(gnRunl, guLanguage) = "&Run"

The first entry defines the button’s name as it appears in status messages,
and the second defines how the name appears on the button itself. This

duplication of entries is needed to support accesslke;g;, the ampersand
character (&) preceding the second entry defines “R” as the “Run” button’s
access key, but you would not want “&Run” to appear in messages that refer
to the button.

What About Languages That Are Not Built In?

Module “modLocalization” contains predefined, commented entries that you
can uncomment and use as a starting point when adding support for a new
language.

If your operator interface needs to support a language that is not already
built into the operator inteface provided with HP TestExec SL, and if your
operator interface does not add new controls or messages, do the following
in module “modLocalization” for each new language:

1. Find thevhX_LANG constant in the general declarations at the beginning
of the module. Increase its value by one for each new language you add.
For example, if the operator interface already supported three languages
you would enter:

Const MAX_LANG = 4

1. An “access key” lets you press the ALT key and type a designated letter to
activate a control or menu item.

50

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

. Find the declaration for enumerated type

TxSLOPUI | nt er f aceLanguage in the general declarations at the
beginning of the module and add an entry for the new language to it. For
example:

Publ i c Enum TxSLOPUI | nt er f aceLanguage

English =1

German = 2

Spani sh = 3

NewlLanguage = 4
End Enum

. Find the declaration for enumerated typet xsl Langl ndex inthe
general declarations at the beginning of the module, as shown below.

Publ i ¢ Enum t xsl Langl ndex

gnAbort =1

gnAbout = 2

...more declarations
End Enum

Near the end of the existing declaration, add an entry for your new
language. Make its value one greater than the last entry in the existing
list. For example, the entry for the German language looks like this:

gnCerman = 69
Your new entry int xsl Langl ndex might look like this:

Publ i ¢ Enum t xsl Langl ndex
gnhAbort =1
ghAbout = 2
... more declarations
gnYieldlparam = 363 ‘ Last existing entry
gnNewLanguage = 364 ‘ Your new entry
End Enum

. Insubroutinel ni ti al i zeLangAr r ay, find the entries that specify
the English language members of array gsLangAr r ay. Copy all of
these entries to the bottom of the subroutine, where they will
subsequently be modified to support the new language.

51

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Be sure to paste the entries ahead of guLanguage = t enplLanguage,
which appears at the very end of the subroutine.

5.

6.

Change the text in all the messages to their equivaentsin the new
language, as shown in the examples in “How Does Multi-Language
Support Work?”

Add an entry in the form of
gsLangArray(gnNewlLanguage, gulLanguage) = "Language"

for your new language to the definition for each language in array
gsLangArr ay. The value at the index gsLangAr r ay, Language,
should be in the local language.

For example, the entries in the definition for the English language look
like this:

gsLangArray(gnEnglish, guLanguage) = "English"
gsLangArray(gnFrench, gulLanguage) "French"
gsLangArray(gnCGer man, gulLanguage) " Ger man"

And the entries in the definition for the German language look like this:

gsLangArray(gnEnglish, guLanguage) = "English"
gsLangArray(gnFrench, guLanguage) = "Franzdsisch"
gsLangArray(gnGerman, guLanguage) = "Deutsch"

Notice how the value at theindex in gsLangAr r ay variesfrom
language to language. Because this example demonstrates support for
three languages, the third being French, the definition for the French
language also would contain an equivalent set of these entries.

At the beginning of the new section, change the value of guLanguage
to the new language. For example, the entry for the German language
looks like this:

guLanguage = German

52

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

8. If you want the new language to be the default, change the value of
guLanguage in subroutine “Configure” in module
“modConfiguration”. For example, to make the German language the
default you would enter:

guLanguage = Ger man

If your operator interface needs to support a language whose characters
cannot be represented in an 8-bit character set—such as Japanese, Chinese,
or Korean—keep the following in mind:

< Do the language conversion on a system that has the appropriate fonts
and tools installed for the new language. For example, if your operator
interface needs to support the Japanese language, the system you use
probably would have a Japanese version of Microsoft Windows,
Japanese fonts selected, and a keyboard that lets you enter Japanese
characters.

< Each control affected by the new language should have its font changed
to one that supports the new language. Assuming the appropriate font is
installed, you can do this by selecting the control and changing its font in
Visual Basic’s Properties Window.

« If you need to switch between fonts while the operator interface is
running, see the example in subroutifeangeFont s in
nodLocal i zati on.

Adding Language Support for a New Control

The definitions igsLangAr r ay contain entries for each of the controls
used in the sample operator interface. If you add more controls to an
operator interface, you must add support for them by doing the following:

1. In the general declarations section of module “modLocalization”, add
new entries for each of the new controls. Assign their numeric values in
sequence after the existing definitions.

53

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

The example below shows added entries for anew command button
named MyButton. The values 12 and 13 assume they are the twelfth and
thirteenth entriesin the list.

...at the end of the existing definitions
"Begi n user-defined controls
Public Const user M/Button As Integer = 12
Public Const user M/Buttonl As Integer = 13

As shown above, we recommend that you prefix your additions with “user”
so it is obvious that they are custom entries. This makes your changes easier
to identify if a future version of HP TestExec SL provides an updated

version of module “modLocalization” in which you wish to reuse your

custom code.

2. Expand arragsLangAr r ay in subroutind ni ti al i zeLangArr ay
by adding entries for the new control. The listing below continues with
the MyButton example begun above.

...at the end of the existing definitions

"Begi n user-defined controls

gsLangArray(user MyButt on, guLanguage) = "My Button"
gsLangArray(user MyButt onl, gulLanguage) = "&W Button"

Here, we are assuming that the entries for “My Button” and “&My
Button” are the twelfth and thirteenth lines in the definition, which
corresponds to the values 12 and 13 assigned to them in module
“Localization.bas”.

3. InroutineUpdat eCont r ol Capti ons in module “modAppSpecific”,
add an entry to update the label on each new control, like this:

...at the end of the existing definitions
"Begi n user-defined controls
For mL. cmdMyBut t on. Capti on = LangLookup(user MyBut t onl)

Adding Language Support for a New M essage

In most respects, strings that contain messages for use in text boxes are no
different from strings that contains captions for controls. Each message has

54

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

itsown definition in gsLangAr r ay, and each definition is associated with
anumeric value. If the language is changed by altering the value of variable
gulLanguage, the appropriate string is read. You can add new message
strings to the array as needed.

The static strings described above work well for simple, unvarying
messages. However, some messages must change dynamically to be
informative. For example, suppose you wished to display a message that
read:

Test MyTest was started at 11:50: 00 AM

You probably would not want to have the name of the test permanently “hard
coded” into your operator interface. Also, you would want to dynamically
update the time, perhaps by calling Visual Basi¢'se function.

To address this need, the predefined operator interface provided with

HP TestExec SL includes utility routines whose names begin with
“txslFormatString” (such asxsl For mat St ri ngl) that are used to

format messages that contain replaceable parameters. Each time the message
is displayed, its definition is looked upgsLangAr r ay for the

appropriate language and the current values of its replaceable parameters are
updated.

At design time (in code as opposed to at run time), the message string for the
example above might look like this:

Test %4 was started at @

See the code in the predefined operator interface for more comprehensive
examples of how this works.

Prompting a System Operator from HP TestExec SL

There may be times when an operator interface is running a testplan and the
testplan needs to display a prompt, let the operator respond to the prompt,
and then take action based upon the operator’s response. For example,
suppose you are testing a module that may or may not have an optional
daughter board attached to it. If the daughter board is present, you need to
run additional tests that exercise the board’s functionality. Also, suppose
there is no reliable way to programmatically test for the presence of the
daughter board.

55

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

At the beginning of testing, you need to prompt the operator to visually

inspect each module and indicate whether the optional daughter board is

present. A straightforward way to do thisis by displaying a dialog box that
contains an appropriate prompt, such as “Is the daughter board installed?,”

and provides Yes and No buttons for the operator’s resﬁohsmnceptual
diagram of this is shown below.

Testplan Yes/No Dialog [x|

Iz the daughter board inztalled?

][wo |

test QueryAboutOptionalBoard I— —>

ﬁ do the optional tests———

test OptionalTestl

test OptionalTest2

ﬁ skip the optional tests

...more tests

<«4— the flow of testing

HP TestExec SL provides several predefined actions that support prompting
of system operators from testplans. Located in directarP*FestExec S
home\actions”, they are:

StdDialogOkay Displays a prompt in a dialog box. The only
possible response is OK.

StdDialogOkayCancel Displays a prompt in a dialog box. Possible
responses are OK and Cancel.

1. Alternatively, the operator could respond by pressing a mechanical
Yes or No button connected to an I/O port that interfaces with an
appropriate hardware handler.

56

Note

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

StdDialogYesNo Displays a prompt in a dialog box. Possible
responses are Yes and No.

StdDialogYesNoCancel Displays a prompt in a dialog box. Possible
responses are Yes, No, and Cancel.

For more information about these actions, see their descriptionsin
HP TestExec SL's online help.

Each of these actions broadcasts a user-defined query to see if a listener,
such as an operator interface, is available to display a dialog box. If it
receives a response from a listener, the action broadcasts a second
user-defined query and waits for a listener to respond by indicating that a
button was pushed in response to the query. If the action does not receive an
initial response from a listener, it displays its own dialog box.

For more information about user-defined queries and responses to them, see
“Understanding User-Defined Messages.”

Continuing with the example begun earlier, you could use the

St dDi al ogYesNo action to let the operator specify whether the optional
board is present. The excerpts from HP TestExec SL's Testplan Editor
window shown below assume that a test in the testplan contains the

St dDi al ogYesNo action, and that the result returned by the action is
associated with a symbol nam@at i onal Boar d in the

Sequencelocal s symbol table.

57

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

1 Sequence: IMain ;I Test Mame: II]uer_I,'.-'i'-.I:lDutDptiDnalB oard

best E!uery.f-".l:u:uutl:lptiuna@nard | Summary:
if Sequencelocalz. OphionalBoard = O then
test OptionalT est
test Optional T est2
end if
I...more tests

ITest that azks the operator

Test Parameters | Actions I Lirnitz I Options

Actions
StdDialogvesio

Parameters for "StdDialogyesMao"

Hame Value
prampk Iz the optional board installed?

@ Sequencelocals OptionalBoard

If the operator presses the Yes button in response to the query, the

St dDi al ogYesNo action returns avalue of zero to Opt i onal Boar d.

Testing the symbol’s value with the “if...then” statement causes additional
tests,Opt i onal Test 1 andOpt i onal Test 2, to execute. Had the

operator chosen the No button, the optional tests would have been skipped.

We stated earlier that if the action does not receive an initial response from a
listener, it displays its own dialog box. Given that, you may wonder why you
would want code in the operator interface to display a dialog box instead of
simply letting the action display the box. A major benefit of having the
operator interface display the dialog box is that operator interfaces created in
Visual Basic support multiple languages. Thus, text in a dialog box
displayed by the operator interface will appear in whichever language the
operator interface is currently using.

Associating Testplans & UUTswith an Operator Interface

The HP TestExec SL ControlRegi st er edTest pl ans collection can

contain one or moréest pl an objects that identify which testplans the
code in an operator interface can load and run. Similarly, the control’s
Regi st er edUUTs collection can contain one or mdRegi st er edUUT

objects that identify which UUTs are available for testing.

Because each testplan can be used to test one or more UUTSs, a relationship
exists between testplans and UUTs. For example, a testplan nhamed

58

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

“Testplanl” might be used to test “UUT_TypeA” and “UUT_TypeB”, while
another testplan—"Testplan2”, perhaps—tests only “UUT_TypeC”. Thus,
“Testplanl” has “UUT_TypeA” and “UUT_TypeB” associated with it, while
“Testplan2” has “UUT_TypeC” associated with it.

These associations let code in the operator interface automatically load the
correct testplan when a UUT's bar code is read. Associations between
testplans and UUTs are made via entries in sections of the HP TestExec SL
initialization file, “<HP TestExec SL home>\bin\tstexcsl.ini”, as shown

below.

tstexcsl.ini

[Test pl an Req]
...entries

associations
between
testplans
and UUTs

[UUT Req]
...entries

RegisteredTestplans collection RegisteredUUTs collection

| RegisteredTestplanl (object) | | RegisteredUUT1 (objecd) |

| RegisteredTestplann (objec) | | RegisteredUUT n (objec) |

Also, the initialization file’s contents define the items that code in an
operator interface uses to populate the HP TestExec SL Control’s
Regi st er edTest pl ans andRegi st er edUUTs collections.

Note

You must manually edit the initialization file to define which testplans and
UUTs are available, and any relationships between them. See “To Register a
Testplan for an Operator Interface” and “To Register a Testplan for an
Operator Interface” in Chapter 1 of thising HP TestExec SL book.

59

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

The example below provides an overview of how these associations work

when reading a bar code that identifies a unigue UUT. Suppose the first

seven characters of the bar code contain the type of UUT, whichin this

example is “UUTABCD” The remaining characters are the serial number of
an individual UUT.

*|UUTABCD|Q 1 2 3 4 5 6 7 8 =«

1. These charactersin the bar code...

[WT Reg] 2. Are used to find thisentry in [UUT Reg] ...
UUT00=6; . . . ; UUTWKYZ
XUUT01=7; ... ; UUTABCD

3. Which references this entry in [Testplan Reg] ...

[Test pl an Req]
Test pl an05=Nor nal ; c: \t est pl ans\ Test pl anBet a. t pa; . ..
Test pl an06=Hot ; c: \t est pl ans\ Test pl anAl pha.tpa;...

I I

4. Which loads this testplan.

When the bar code is scanned, code in subrotkmell eBar Code in

formf r mVAi n in the operator interface parses it and stores the first seven
characters in string variabldJT_Type. The other nine characters are
stored in string variabledUT_Ser i al Nurber . The value oUUT_Type is
used to look for a matching string of characters in the “name” field in an
entry in thgl UUT Reg] section of the initialization file. Here, the possible

names are “UUTWXYZ” and “UUTABCD™
The value ofJUT_Type matches “UUTABCD” in the entry inUUT Reg]

that contains UUTO01=7, where 7 is an index that references a related entry in
the[Test pl an Reg] section of the initialization file. Because the index

is 7, the related entry inTest pl an Reg] is Test pl an06,2 which

60

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

identifies “TestplanAlpha.tpa” as the testplan to load for the UUT whose
type is “UUTABCD”".

For a more detailed description of the syntax of entries in the initialization
file, see the comments for thdest pl an Reg] and[UUT Reg]
sections in that file.

Using Peripheralswith Operator Interfaces

Which Peripherals are Supported?

The sample operator interface created in Visual Basic supports the following
peripheral devices:

 Strip printer with serial interface, such as the HP E1199B

< Bar code reader that connects inline with the keyboard, such as the
Symbol Technologies, Inc. model LS 3603MX connected to a keyboard
“wedge” interface

» Bar code reader with serial interface, such as the Symbol Technologies,
Inc. model LS 3603MX connected to a serial interface

» Keypad that connects inline with the keyboard, such as the Cherry model
ML4700

< Digital I/0O hardware, such as the HP E1330B VXI Quad 8-Bit Digital
Input/Output module or an M-Module

The “One Peripheral Per Form” Convention

In general, each peripheral device hasits own form in Visual Basic. The

code in aform associated with each peripheral handles interaction with the
peripheral even though other forms or modules may be the actual users of

the peripheral. For example, form “frmStripPrinter” acts as a container for
controls used to interact with a strip printer. Also, the form contains code

2. Thereisan offset of 1 between indexesin [UUT Reg] and numbered entries
in [Testplan Reg].

61

Note

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

that configures the 1/0 port and does some formatting of report output.
However, the actua report information sent to the strip printer is acquired
elsewhere from HP TestExec SL.

The forms provided for interacting with peripheralsinclude:

frmStripPrinter Used with a strip printer
frmSerialBarcode Used with a serial bar code reader
frmTxSLSharedIO Used with I/O resources that are shared by an

operator interface and HP TestExec SL, such as
a digital I/0O card used to read external Run and
Stop buttons

Peripherals that connect inline with the keyboard, such as keypads and
“keyboard wedge” bar code readers, do not have separate forms because
they simply emulate the behavior of the keyboard.

If you add other peripherals, we recommend that you follow this “one
peripheral per form” convention so you can quickly identify the sections of
code associated with peripherals. Also, you probably will want to include
Boolean variables in module “modConfiguration” to indicate the presence or
absence of any optional peripherals whose forms you include in an operator
interface.

Using Bar Code Readers

See “Associating Testplans & UUTs with an Operator Interface” for
information about how scanning a UUT’s bar code can automatically load
the appropriate testplan.

About Bar Code Readers

A bar code reader provides quick and error free entry of information that is
used repetitively, such as operator logins or serial numbers. Some bar code
readers resemble guns that you point at the bar code being read, while others

62

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

are wands that you wave across the bar code or horizontal scanners over
which you pass the bar code.

Regardless of which type of bar code reader you use, their typical
characteristics include:

e Support for some method of triggering that tells them when to read the
bar code. For example, a bar code “gun” usually has a physical trigger to
pull, while a serial bar code reader may expect a signal that tells it when
to read the bar code.

» They interface with a PC via some |/O strategy, such as inline with its
keyboard (usually the easiest to implement) or via a serial port.

e They can be programmed to specify which, if any, optional leading or
trailing characters are sent to help identify what is contained in the bar
code, or to identify the end of transmission. For example, the bar code
reader may append a carriage return/line feed to a bar code. When code
in the operator interface sees this combination of characters, it knows the
complete bar code has been received.

Because these characteristics can vary with the model of bar code reader,

make sure you are familair with how your bar code reader operates, and how

to program it appropriately.

Changing the Processing of Bar Codes

When a bar code is read, code in subroutine “HandleBarCode” in form
“frmMain” processes it. This processing includes checking the bar code’s
validity, parsing it into separate strings that contain a UUT type and serial
number, and loading the appropriate testplan according to the type of UUT.

Browse the code in “HandleBarCode” to see how bar codes are processed by

default, and modify the code as needed if your bar code scheme is different
from the default.

63

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Testing the Codefor Bar Code Readers

HP TestExec SL provides several sample testplans and related files you can
useto seeif your bar code reader can successfully read bar codes. Located in
directory “<HP TestExec SL home>\samples\uidebug\testplans”, they are:

5Passes.tpa Testplan with five tests that pass
SFailures.tpa Testplan with five tests that fail

TypesAndLimits.tpa Testplan that illustrates simple data types and the
limit checkers used with them. Also, sends a
message to the stream of report data during
testing. Has two variants, Normal and WithDelay,
where WithDelay inserts delays into tests to slow
them so you can watch the testplan as it
executes.

Note You may need to modify the search paths for actions and DLLs to make
these testplans work; see “Specifying the Search Path for Libraries” in
Chapter 5 of thé&Jsing HP TestExec S book.

64

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Shown below are bar codes you can use to test bar code readers. They work

with the testplans described above, and with the default associations

between testplans and UUTs specified in HP TestExec SL’s initialization file
(see “Associating Testplans & UUTs with an Operator Interface”) Below
each bar code is the text it contains.

Loads the 5Passes testplan

Loads the 5Failures testplan

Loads the 5Failures testplan

Loads the TypesAndLimits

testplan

Loads the TypesAndLimits
testplan

Loads the TypesAndLimits
testplan with the WithDelay
variant

= P A S S 5 B C 9 8 7 6 5 4 3 2 1 =«
= F A | L 5 B C ®w 1 2 3 4 5 6 7 8 =«
= F A I L 5 B C 9 8 7 6 5 4 3 2 1 =«
* B C 1 2 3 4 5 ®w 1 2 3 4 5 6 7 8 «*
= B C 1 2 3 4 5 9 8 7 6 5 4 3 2 1 «*
*= B C D E L A Y ®w 1 2 3 4 5 6 7 8 =«

Accessing Symbol Tablesfrom an Operator Interface

If desired, you can access a symbol in one of HP TestExec SL's symbol
tables from code written in Visual Basic. Suppose the Sequencelocals

65

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

symbol table hasasymbol named My St ri ngAr r ay defined init, as shown

below.
Symbol Tables |
Tables: [TestSteplocals Select a symbol table from the list to edit or view it vou may
eslSteF‘armS alzo add or remove links bo external symbol tables. [Jze
Sequencelocals File=>:Mew or File=:0pen to create and edit external spmbol Cancel |
TeztPlanGlobals tables). —
Syztem

Link to External Symbal Table... |

Bemove Link to Sumbaol Tablz |

Symbolz

Yalue Data Type Drescription

i |2 character strings indexed from Ota 1 | Stiing Amray Symbal that iz to be accessed

Also, suppose that the symbol’s definition looks like this:

i, MyStringiuray - String Array nm

J—

IEditing aymbal "MyStringdray’

Waluyes | Dirnensions I Attributes I

1 ﬂ b e Izeru:u
Index | String walue
1]

1| one

You could use the following code associated with the “click” event for a
command button in an operator interface created in Visual Basic to read the
value of the symbol and display it in Visual Basic’s Immediate window.

66

Customizing the Operator Interface
Operator Interfaces Created in Visual Basic

Private Sub cndTest StringArrayAccess_dick()
Di m Synbol Tabl eArray As Vari ant
Synbol Tabl eArray = Test ExecSL1. Synbol Tabl es _
(" SequenceLocal s"). Synbol s("M/Stri ngArray"). Val ue
Debug. Print "This is the value at index 0: " & Synbol Tabl eArray(0)
Debug. Print "This is the value at index 1: " & Synbol Tabl eArray(1)
End Sub

The output in the Immediate window would be:

This is the value at index 0: zero
This is the value at index 1: one

Note the need to define a variable of type Variant when accessing an array,
and then read the value from the symbol table into the variable before using
it. If desired, you could also write to the symbol and modify its value; for
example,

Synbol Tabl eArray(1) = "NewStringVal ue"

For more information about symbol tables, see Chapter 5 in the Using
HP TestExec S book.

67

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

Operator InterfacesCreated in Visual C++

Note The sample operator interface provided with HP TestExec SL that is created
in Visual Basic has some automation features built into it, while the sample
operator interface created in Visual C++ does not.

What isthe Sandard Operator Interfacein Visual C++?

The standard operator interface created in Visual C++ is shown below. The
code for its project is in directory HPTestExec SL home>\opui”.

Tenl Enec 5L Fenciamal Tam Sraton

Tkl
v - m
g | g

LUT infarrafion

LT Flare LUT Hes 1
Canal b | |
|

Tei! Elghn

Sk G isie =

IRIT T Rsaidk Lk

Laai Tk T TN

Bovpetnge T gl Timwy] —_—

Wiorkia Fared Sncs St
e i | oied Do ot

Dl i wold

Legr
Apaer ML
Pl et 5 e pdid boee e it poen rawee fendd (2]

Tk Papadd Tceea [

68

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

Inside an Operator Interfacein Visual C++

Before you create a specific operator interface in Visual C++, you should be
familiar with how operator interfaces work in general when using Visual
C++. The next several topics describe the underlying concepts for operator
interfaces developed in Visual C++.

Overview

Refer to the illustration below. When someone logs in to HP TestExec SL

they are identified as the member of a group, such as “Operator.” The Test
Executive loads whichever user interface, or “personality,” is associated
with the user's group in file ‘HP TestExec SL home>\tstexcsl.ini”. By

default, the code for the operator interface is stored as a DLL in file
“opui.dll”.

Custom DLL based
on "opui.cpp”

Test Executive _
#include . . .

Load a DLL chosen VLoadTestplan ();
by "Operator" entry ——’ VRunSequence ():

in "tstexcsl.ini" Calls to the

.(6t.her calls) "Runtime API"

V.U-nlloadTestplan O;

The DLL for the operator interface contains calls to functions in what is
called the “Runtime API” because it is an API that lets you vary how the
Test Executive appears to its users. This custom API provides the functions a
user interface needs to interact with the Test Executive. Besides calls to the
Runtime API, the DLL also contains whatever supporting code you write for
use with the calls, such as functions to display status information or make
buttons appear on the screen.

For descriptions of the functions in the Runtime API, see Chapter 5 in the
Reference book.

69

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

How the Operator Interface Requests Service

When the custom DLL containing code for the operator interface is loaded,
the Test Executive acts as a server that responds to requests from the
operator interface. For example, if the Test Executive is acting as a server
then clicking a button on the user interface could have the DLL call a
function in the Runtime API that causes the Test Executive to begin
executing atestplan.

Shown next is a state diagram for the Test Executive when it acts as a server
for an operator interface created in Visual C++. The states it can assume are

70

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

Init, Empty, Testplan Loaded, Sequencing, Running, Test Executing, and
Reporting. Arrows show transitions from one state to another.

N
Power On

Init

Successful call to
VLoadTestplan()

< Empty
AdwseIdIePoII()

N

AdviseTestplanLoaded()

\ 4

4

3

Successful call to

State transition initiated by the
sequencer as it enters the y

outer run loop. This is initiated P
by VRunSequence()

@astplan Loaded
AdviseldlePoll()

2/

3

VUnloadTestplan()

“-AdviseTestplanUnloaded()

State transition initiated by the
sequencer as it exits the outer

AdviseSequenceBegin()"’/ A\ 4

State transition initiated by the
sequencer as it begins one
pass through the testplan
(however the sequencer
defines a pass)

<Sequencing

N

A

- AdviseSequenceEnd()

run loop. Any user-requested
looping has now ended.

State transition initiated by the
sequencer as it returns to the
outer run loop. At this point,

v
AdviseRunning Begin()~

State transition initiated by the
sequencer to inform listeners

that a test has begun executing

Running

AdviseTestBegin()

State transition initiated by the
sequencer to inform listeners
that a test has finished executing

AdviseTestEnd()

Test Executing

*AdviseRunningEnd()

the sequencer has decided it
has completed one pass of

whatever it is going to do.

State transition initiated by the
sequencer to inform listeners
of the need to report a test result

Reporting

_---AdviseTestReport()

A transition from one state to another occurs in response to a request made
by acall to the appropriate function. A testplan must be loaded before

71

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

proceeding to any of the run states. Thus, a normal start-up processisto use

the VLoadTest pl an() function to bring the Test Executive from the

Empty state to the Testplan Loaded state. Once this has been done, you can

begin running atestplan by calling function VRunSequence() in

response to a “Run” button or an automation handler. When the test
sequencer exits at the end of the testplan, the Test Executive returns to the
Testplan Loaded state and is ready to accept a new request to run the
testplan.

Most state transitions call a related internal function that generates an
advisory message you can receive via a callback routine if the code in your
operator interface has registered interest in that event. For example, the
initial transition from Sequencing to Running (down the left side of the state
diagram) has routin&dvi seRunni ngBegi n() associated with it. If you

use the related callback routindRegi st er Runni ngBegi n() , in your
operator interface to register interest in this event, the operator interface will
be notified when this state transition occurs. You could use knowledge of
this event to print a “Testing..." status message for operators to let them
know when testing is underway. In a similar fashion, you can register
interest in other events and act upon them.

Accessing Global Data from the Oper ator Interface

Besides requesting service from the Test Executive when it acts as a server,
an operator interface also needs to interact with global data for the test
system. For example, the operator interface may need to know the name of
the current testplan, the pass/fail status of the previous test, or the results
from a measurement.

A specialized set of functions in the Runtime API lets your code in the
operator interface access global data stored in the System symbol table; see
“Predefined Symbols” in Chapter 5.

Interacting with the Test Sequencer

The standard Test Executive provides a simple sequencer that is optimized
for the needs of high throughput, “Go/No-Go” testing applications. For more
demanding applications, you may want to augment that sequencer’s
functionality. Although the basic sequencer will always be there because it
houses data structures used by HP TestExec SL, you can cause your own
sequencer to be run instead of the one provided by Hewlett-Packard.

72

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

The framework in which test sequencers operate in HP TestExec SL
provides a set of built-in controls whose settings are accessible via API
functions. These controls are available to any sequencer that isloaded, and
we recommend that your replacement sequencer honors these controlsto the
extent it can.

API functions you can use to determine under what conditions the sequencer
halts, and in which stateit halts, are;

V ConfigureHaltOnFailure()
V ConfigurePauseOnFailure()
V ConfigureNoHalt()

V GetHaltM ode()

V GetFail CountLimit()

Two other API functions let you run the testplan repeatedly:

V ConfigureCountedL oops()
V ConfigureTimedL oops()

Thelast two APls are mutually exclusive; i.e., you cannot simultaneously
use counted loops and timed loops.

See Chapter 5 in the Reference book for the full syntaxes of these AP
functions.

Creating an Operator Interfacein Visual C++

You must be proficient with Visual C++ and the Microsoft Foundation Class
Library (MFC) to do the tasks described below.

Details of the steps described below will vary according to which brand and
version of compiler you use.

1. Create anew directory and copy the project files for the operator
interface supplied by Hewlett-Packard to it.

The original project files are located in subdirectories beneath directory
“<HP TestExec S home>\opui”.

73

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

2. Rename the new project. For example, the original project is named
“opui” and it creates “opui.dll” as its output. Given this, you might call
yours “my_opui”.

3. Start your compiler and open the project in the directory you just created.

4. In your compiler, specify the locations of the project's files in the
directory you created.

5. Edit the source files as needed to modify the operator interface.

If you want to change the underlying functionality of the operator
interface, edit file “opui.cpp”. To modify the appearance of the operator
interface, edit the visual resources associated with it.

6. Compile the source files into a DLL.

For convenience, you can compile a debug version of the file, use it, and
not bother recompiling it as a release version. The additional overhead
from debug code in this single DLL is negligible.

7. Copy the modified DLL to HP TestExec SL's “bin” directory so that it
replaces the existing file “opui.dll”.

Tip: If desired, you can give your new DLL (and its project) an entirely
different name from the original. If you do, be sure to edit “tstexcsl.ini”
so the “Operator=" entry in its [Components] section specifies the name
of the new DLL for the operator interface.

Doing Specific Tasks with an Operator Interfacein
Visual C++

Responding to a “Run” Button

During itsinit, the personality registers callbacks for AdviseSequenceBegin,
AdviseSequenceEnd, and AdviseRunningEnd.

The user or system integrator creates an operator interface formasaDLL
following the Runtime API guidelines. It is probably a MFC-based DLL.
The operator interface presents a Run button as a control on the form. A

74

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

function named OnRunClick() is created and associated with the click event
of the Run control. The OnRunClick function calls V RunSequence()
(Runtime API routine). If the system is successful in bringing the sequencer
to the Running state the operator interface gets back its
AdviseSequenceBegin callback. The interface should note the running state
onitsdisplay (e.g. light the Run button) and return. At the end of the testplan
the interface code will get first the AdviseRunningEnd callback and then the
AdviseSequenceEnd callback. The testplan end callback will be the only one
received if the user pressed Pause, assuming it was provided by the interface.
At this point control returns to the statement following the VRunSequence
call.

Beginning a Test Cycle

During init, the controller registers the AdviseldliePoll,
AdviseSequenceBegin, and AdviseSequenceEnd callbacks.

Let's take a simple scenario first. Assume only one testplan is being run on
this station for a long time.

Assume the init of the personality reads the fixture code and loads the uses it
to determine the testplan to load. Perhaps it has a “.ini” file that provides the
lookup function. It then reads the path of the testplan to automatically load
and manually loads it (VLoadTestplan()).

At this point the system is in the Testplan Loaded state and the
AdviseldlePoll is being polled continuously during the system idle time.
When the automation interface detects a load command from the automation
handler, it reads the bar code of the UUT, decodes it, verifies that the module
type is correct, and stuffs the serial number into the proper symbol table
parm for use by the rest of the system. It then calls the VRunTestplan() API.

The sequencer takes charge now and calls the AdviseSequenceBegin
callback as it begins executing the testplan tests. When the testplan
completes it calls the AdviseSequenceEnd callback. The automation
interface now does whatever operation is hecessary to release the UUT, and
signals the automation handler. Control returns to the original

AdviseldlePoll function where the run was initiated. It simply returns. The
system is now back in Testplan Loaded state polling for automation activity.

The complex scenario is just like this except that when the interface reads
the module type it determines that a different testplan is required. It calls

75

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

VUnloadTestplan() and calls VLoadTestplan() for the new one. Now
VRunTestplan() can be called to pick up the scenario just as the simple case.

Displaying the Name of the Current Test

Register to receive the AdviseTestBegin and AdviseTestEnd callbacks. The
AdviseTestBegin callback will supply the handle of the currently executing
test. The operator interface form can then use V GetTestName () to get the
name of thistest statement and display it on the form. The end callback will
inform the interface to cancel it.

Displaying the Testplan and Test Timing

Register to receive the AdviseRunningBegin, AdviseRunningEnd,
AdviseTestBegin, and AdviseTestEnd callbacks. The testplan begin/end
calls will bracket the time to execute one pass through the testplan. If the
user wishesto track average passing time and average timeto first failure
they can distinguish them by tracking the overall pass/fail state by looking at
the state of each test at the AdviseTestEnd callback. The execution time of
each test may be determined by the test begin/end bracketing calls.

Displaying M essages

The user interface can register itsinterest in the AdviseUserDefinedM sg
event. When the test programmer broadcasts a message viathe

V SendUserMessage() function, it will be routed to the callback function. It
is the responsibility of the user interface provider to display the message.
The tag parameter can be used to communicate any user defined
information, such as screen location to post in, “severity”, color, etc.

Beginning When the Testplan Name is Unknown

There are times when the actual testplan to use cannot be identified until a
UUT is loaded or scanned. In this situation, the personality will only bring
the system up to the Empty state and wait there until the user presses run or
the handler indicates it is ready. Then the UUT type/testplan can be
identified, the proper testplan loaded, and the run initiated.

76

Note

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

Creating an Automation Interfacein Visual C++

The topicsin this section suggest ways in which you might handle the
implementation of an automation interface in Visual C++.

Note: Look in either of two places for descriptions of the API calls

referenced in subsequent topicsin this section. Calls whose names begin

with “Uta” belong to the C Action Development API, and calls whose names
begin with “V” are part of the Runtime API. Both APIs are documented in
the printedReference book and in online help.

Softwar e Configuration for an Automation Interface

The “testexcsl.ini” file contains configuration options you must set when an
automation interface is present:

- Aflag to indicate the presence of an automation interface. This tells the
test system to skip the normal log-in sequence

« A pointer to the DLL that contains the automation interface.

» A flag that causes failure ticket information to be sent to the default
printer.

See also: “Setting Up an Automation Interface” in Chapter 6 of thsing
HP TestExec SL book

Choosing a Task Model in Windows

Your choice of a Windows task model affects the construction of your
automation interface. For example, Windows applications can use a task
model in which there is only a single thread of execution. When a process
has control of the execution thread, other processes cannot run. This means
that under the single-thread model you cannot assume that your automation
interface is actively running in the background while other Windows
processes are active.

This can also create conflicts with the Windows “event-driven” approach in
which nothing happens until an event (such as the user clicking a button)
occurs. The nature of the event determines the next system action. If the

77

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

automation interface does not keep this “event loop” alive, the system may
stop responding to events.

If you implement your automation interface as a modal dialog, it will control
its own event loop. To poll for external events that would initiate a test cycle,
the interface must coordinate the test system execution thread with the
Windows event loop. You can find many techniques for implementing this
approach in Windows programming references.

A pseudo-code example of the method looks like this:

Msg meg;
whi | e (m bKeepGoi ng)
{

i f (poll Aut ormati onHandl er())
initiate Test();
i f (PeekMessage (&nsg, hDialog, 0, 0, PM REMOVE))
if (!l1sDi al ogMessage(hDi al og, &msg))
{
Transl ate Message (&nsgQ);
Di spatch Message (&nsgQ);
}
}

A simpler technique uses some of the built-in support provided by functions
in HP TestExec SL's Runtime API. If you implement your automation
interface as a non-modal dialog, the normal HP TestExec SL event loop
stays active. You can register a request for idle polling and the API will
continually call your poll routine as long as the system is idle.

Here is a pseudo-code example of this technique:
void Myldl ePoll (WORD state)

if ((vstate)state < VSequenci ngSt at e)
i f (poll Aut ormati onHandl er())
initiate Test();

}

Related API Functions are:

VRegisterldlePoll()
UtaKeepAlive()

78

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

Using a Bar Code Reader

In an automated production line, bar code readers usually connect to the test
system by an RS-232 serial interface port. In atypical scenario, the
automation interface receives asignal that a board has arrived. The
automation interface then triggers the bar code reader to scan an identifier
label on the UUT. The automation interface uses a symbol table to look up
the UUT type and the corresponding testplan. HP TestExec SL then loads
and runs the appropriate test for the UUT.

If the bar code reader is under the control of the test system, then it can be
triggered to read a bar code UUT identifier when aUUT arrivesto test. The

bar code reader typically responds by sending the identifier read back to the

test system by a serial port. The buffer size of the serial port can be an issue

if the identifier islonger than the 16 characters handled by a standard 16550
UART in a test system’s serial interface. For longer identifiers, you may
have to use a serial interface card with a larger buffer to avoid losing UUT
identifier characters.

Related API Functions are:

VLoadTestplan()
VRunSequence()

Monitoring Test Results

Once started by théRunSequence() function, the testplan runs to
conclusion (or continues until interrupted by the user) before returning
control to the automation interface. When the testplan finishes, it halts and
returns a code. The code indicates whether the system had a normal or
abnormal completion. You can use this code as a reasonably accurate
pass/fail indicator, but the code may not adequately reflect the true situation.
For example, you may have set the test system options to ignore all failures
or to continue until a given number of failures has accumulated.

A better way to determine the test results is to register a callback for the
Report event using tiéTest Judgenent () function to determine

whether the test passed or failed. You can accumulate information about the
pass or fail status of each test, then use that information to decide the next
action for the automation interface (display a message, notify an automation
controller, etc.). For example, a UUT may have to fail tests 2 and 4 out of
tests 1-4 before the overall result is a failure for that UUT. You would

79

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

accumulate the pass/fail information in atable, then use the table to make the
final determination.

Related APl Functions are:

VRunSequence()

V TestJudgement()

VRegisterTestReport()

Miscellaneous functions for callback registration

Displaying M essages to the User Interface

The automation interface must display whatever system status information
required for the operator interface. Most of the events of interest to the
automation interface are available by runtime API callback registration.
Typical information desired might be the name of the current testplan, the
state of the tester (running, stopped, etc.), the pass/fail status of the current
or previous UUT, the name of the test currently executing, and the current or
previous failure report.

Related APl Functions are:

Functions for callback registration (VRegi ster. . .)
Functions for interacting with system data (VGet . . .)

Also, the full Visual C++ MFC class library is available to handle
Windows interactions.
Responding to Keyboard and Mouse Commands

The automation interface must handle the keyboard and mouse input for the
test system. See the exampl e operator interface for details on waysto handle
thisinput.

Related APl Functions are:
(none)

The full Visua C++ MFC classlibrary is available to handle this
Windows interaction.

80

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

Generating Repair Information

There isno default report window or standard reporting feature. Asa system
integrator, you have total control over the contents, format, display, and
printing of your test reports. However, you can use a simple built-in
function, St andar dTest Report (), to easily format reports.

Generating areport trace is atwo-step process. Although the process may at
first seem awkward, it gives you flexibility. First, your user interface needs

to register three callbacks¥Regi st er Test Report (),

VRegi st er SendReport Msg(), and

VRegi st er Cl ear Report () —to generate the report content. Second,
you route that content to its destination.

TheVRegi st er Test Report () callback gives you a handle to the test
that just executed. You can then useMfiest Judgenent () function to
determine whether the test passed or failed. To trace the test, call the
functionSt andar dTest Report (HUTEST, Cstri ngd). Itreturns a
formatted string in th€st r i ngd reference parameter. Include “rprtfmt.h”
and link to “prrtfmt.lib” to use the standard report format.

If the standard format is unsuitable or if you do not want to alter the format
for all interfaces by replacing “rprtfmt.dll”, create your own format. The API
provides several useful functions. The most important one for reporting is
VCGet Li mi t sandRest 2().

Related API Functions are:

VRegisterTestReport()
VRegisterSendReportMsg()
VRegisterClearReport()
VTestJudgement()
VGetLimitsandResult2()

Writing Repair Tickets

Some automated lines require that the test system print a failure ticket to be
attached to the UUT or its carrier after testing finishes. The automation
interface must control this operation if the test system manages the printing.

You may also choose to implement a “paperless” repair ticket scheme in
which you do not necessarily want to print a repair ticket on the spot if a
UUT fails. For example, the automated production line, based on pass/fail

81

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

information from the test system, may automatically route failing boardsto a
repair loop. There atechnician would reread the UUT bar code to call up a
display of the failure information.

To accommaodate the paperless scheme, you can use HP TestExec SL's
built-in datalogging features to output test results in a file. You can then
route the results elsewhere (such as a main automation controller) for
formatting and using the information in an overall repair ticket.

The sample user interface provided with HP TestExec SL includes an
example of how to print failure information.

Signaling Downstream Devices

After the testplan completes, it is the responsibility of the automation
interface to signal downstream automation equipment or the central
computer that the test is complete and to indicate the test results. This could
be by a message sent on a serial or LAN interface, depending on the
specifics of the automation system.

Datalogging

One outcome of testing may be to send datalogging information to a quality
management system. This capability is built into HP TestExec SL. The

automation interface does not have to handle datalogging tasks unless you
need a format or protocol not supported by the built-in datalogging features.

LAN Communications

Some automation systems may require that the test system communicate
with a central automation controller by a LAN interface. The test system’s
automation interface must then provide the correct communications protocol
and messaging. You can add LAN communications using existing Windows
networking features. Consult the relevant Windows documentation for more
information.

Dealing with Problems

Sometimes the automation line experiences problems to which the test
system must respond. Examples include downstream equipment failures that
force the test system to stop accepting more UUTSs to test. The automation

82

Customizing the Operator Interface
Operator Interfaces Created in Visual C++

interface must handle such exceptions as part of its interactions with other
automation equipment or the central automation computer.

Other problems may arise when HP TestExec SL raises an exception testing
aparticular UUT. Thereis an error sequence testplan that tries to put the
UUT and test system in a safe state when an exception occurs. The error
sequence, however, also may experience an exception for a particularly bad
problem. The automation interface must then decide how to continue after
such exceptions occur. This may include the following:

* Notifying downstream automation equipment or the central computer of
the exception.

« Deciding, based on the exception type and severity, if the test system
should continue testing the next UUT.

« Deciding to exit HP TestExec SL if there is an extreme error condition.

Related API Functions are:

UtaExcReglsError()
UtaExcRaiseUserError()
UtaExcRegClearError()
VAppEXit()
VStopSequence()
VPauseSequence()

83

Creating a Hardware Handler

This chapter describes how to create a hardware handler, which is a software
layer written in C/C++ that knows how to communicate with a hardware
module and is aware of the module’s internal topology.

For more information, see Chapter 3 in @Geiting Sarted book, Chapter 4 in
the Using HP TestExec SL book, and Chapter 3 in thieference book.

85

Creating a Hardware Handler
Writing a Hardware Handler

Writing a Hardware Handler

The following topics describe how to implement a hardware handler. Once
you have created the hardware handler, you can specify it when using the
Switching Topology Editor to define switching topology, as shown below.
This makes HP TestExec SL aware of the hardware handler.

-ZE Layerl - [O] x]
CAliases]

CWires Marne: IMyHardwareModuIe [T Disable
E=Modules Diescription:

& hardware module that has a switching
handler azzociated with it.

(| MyHardwareModule

Prefix ||

Library: IMySwHandIer.dlI Erowse... |

Modeling Your Hardware

Asan aid when creating ahardware handler, label adiagram of the switching
elements inside modules so that each connector, node, and switching
element is uniquely identified.

86

Creating a Hardware Handler
Writing a Hardware Handler

The example below shows a simple 2x2 switching matrix with its features
labeled.

| Connector 2 |

c2-1 c2-2
K11 K12
-~ 1l imml
- C1-1 |m =) |-
o
]
(%]
1]
o
5 K21 K22
(&) (nml il
C1'2 J = =]
Switching Module - 2 X 2 matrix

Monitoring the Satus of Hardware

There may be times when you want HP TestExec SL to interact with very
simple hardware, such as switches or sensors. For example, suppose your
test system is connected to an automated handler that uses a microswitch to
indicate when the UUT is correctly positioned for testing. HP TestExec SL

87

Creating a Hardware Handler
Writing a Hardware Handler

can “watch” for closure of that switch and then continue testing when the
switch closes. One method for doing this is shown below.

HP TestExec SL
Hardware
Advi (I:\ZH " Handler Get status of microswitch
Test viseMonitor() microswitch
SwitchStatusExecute ——) | AdviseMonitor () | «——p| I/O Port

Does symbol's
value indicate
that switch
has closed?

Symbol Table Write switch's status
to symbol

SwitchStatusVar

The example works like this:

1. Atest being run by HP TestExec SL contains an action named
Swi t chSt at usExecut e whose code (written by you) loops until the
value of a symbol namesiv t chSt at usVar in a global symbol table
indicates that the microswitch has closed. For example, the value of
Swi t chSt at usVar might be 1 when the switch is closed and 0 when
it is open.

2. Meanwhile, HP TestExec SL is periodically calling a function named
Advi seMoni t or () in the hardware handler.

For information about specifying how frequently HP TestExec SL calls
theAdvi seMoni t or () function, see “Specifying the Polling Interval
for Hardware Handlers” in Chapter 6 of theing HP TestExec S book.

3. WhenAdvi seMoni t or () is called, its implementation code (written
by you) interrogates an 1/O port—a serial port, perhaps—to see if the
microswitch is closed or open.

88

Note

Creating a Hardware Handler
Writing a Hardware Handler

When it receives the status of the microswitch, Advi selbni t or ()
writesthat statusto Swi t chSt at usVar inthe symbol table.

When the value of Swi t chSt at usVar finally becomes “true,” the
Swi t chSt at usExecut e action stops looping and testing continues.

The options you have when choosing where to implement an
Advi seMoni t or () function are:

You can put the function in the handler for a hardware module or
instrument.

You can create a minimal hardware handler whose sole purpose is to
monitor the status of hardware, and put the function in it.

Besides the code that implementsAlderi seMoni t or () function, all
the minimal hardware handler needs are the mandatory functions
required in every hardware handler, whicheel ar ePar ns(),
Init(),d ose(),andReset ().

Creating a Project for the Hardware Handler

The topics in this section describe how to use the development environment
provided with Microsoft Visual C++ 6.0. If you are using another C/C++
development environment, the details will vary but the concepts will be
similar.

Specifying the Path for Libraries

1. Choose Tools | Options in the Visual C++ menu bar.

2.

In the Options box, choose the Directories tab and specify a path for
library files that includes the “lib” directory beneath the home directory

89

Creating a Hardware Handler
Writing a Hardware Handler

in which HP TestExec SL isinstalled on your system. An exampleis
shown below.

Editor | Tabs | Debug | Compatibility | Build | Directories | { EE

Flatfarm: Show directaries far:
[win32 | [Library files |
Directaries: i O e

C:MProgram FileshMicrozoft YWisual Studic'WCIEALIE

C:MProgram FileshMicrozoft Yisual Studic'W CI84FCALIE
IC:'\F‘ngram FilesHP TestExec SLAIH | I

Note Depending upon where you installed Visual C++ and HP TestExec SL on
your system, your paths may vary from those shown.

Specifying the Path for Include Files

1. Inthe Options box, specify a path for include files that includes the
“include” directory beneath the home directory in which HP TestExec SL
is installed on your system. An example is shown below.

E ditar I Tabsz | Debug | Compatibility | Build | Directaries |{EE

Platfarm: Show directaries for:
[win32 | [inciude fiies |
Directories: [O 2 5

C:%Proagram Fileshkicrosoft Yisual StudioWWCIENMNCLUDE
C:4%Program Fileshkicrosoft Yisual StudioWWCISNMFCAMMCLUDE

C:\Program Fileshhicrozoft Yisual Studio' W CIENATLWNCLUDE
IE:\F‘IDgram Files\HP TestExec SLAnclude

2. Click the OK button to save the path you specified.

Note Depending upon where you installed Visual C++ and HP TestExec SL on
your system, your paths may vary from those shown.

90

Creating a Hardware Handler
Writing a Hardware Handler

CreatingaNew DLL Project

1. ChooseFile| New in the Visual C++ menu bar.

2. Choose the Projects tab and specify Win32 Dynamic-Link Library asthe
type of project, as shown below.

New ﬂﬂ

Files = Projects | Workspaces | Other Documents |

L& ATL COM Appiwizard Project name:
¢ | Cluzter Resource Type Wizard IM}'HENE"ET
g+ Cuztom Appiwizard)
&) Database Project Lagation:
2 [eS tudio Add-in Wizard IE:'\F‘IDgram Fileghhicrozaft Wizua J
b 154F Estenzion Wizard
j M akefile
"f", MFC Activex Contralafizard {* Eleate =00 wgrkgpace
MFLC Appiafizard [dil] O Add to curent wiorkspace
rara MFC Appiwizard [exe] [Dependency of
T4 Utility Project I ;I
A|'Win32 bpplication
Win32 Conzole Application
2 Ciynamic-Link, Librarny:
| Win32 Static Library Elattoms:
[wiin3z

3. Type aName for your project.
4. Specify the Location for your project.
5. Choose the OK button.

6. Choose to create an empty DLL project, as shown below.

Win32 Dynamic-Link Library - Step 1 of 1

Wwhat kind of DLL would vou like to create 7

0 4 empty DLL project
£ A simple DLL project.
7 A DLL that esparts zome symbals,

91

Creating a Hardware Handler
Writing a Hardware Handler

7. Choose the Finish button.

8. Verify the information for the new project, as shown below.

Mew Project Information E

Win3d2 Dynamic-Link, Library will create a new sheleton project with the following
gpecifications:

An emphy DLL project will be created for you.

ko files will be created or added to the project.
9. Choose the OK button.
Specifying the Project Settings
You specify the project settings once for each new project you create.
1. Choose Project | Settings in the Visual C++ menu bar.
2. If needed, choose the General tab to make its options visible.

3. In the Project Settings box, specify “Not Using MFC” for the Microsoft
Foundation Classes option, as shown below.

Project Settings ﬂ E

Settings For. [ywin32 Debug j General | Debug | CAC++ | Lirik I Hesourc(: EE

B4 byHandler

Micrazoft Foundation Classes:

4. Choose the Link tab to make its options visible.

92

Creating a Hardware Handler
Writing a Hardware Handler

5. Specify “utacore.lib” for the “Object/Library modules” option, as shown
below.

Project Settings nm
;I General | Debug | C/C++ | Link | Hemurcé EE

Categons: IGeneraI j Beset |

Output file nare:
|Debug MyHandlerdi

Object/library modules:

Iutacole. lib

Linking against “utacore.lib” lets the compiler resolve all the external
references to HP TestCore definitions and functions used in your
switching handler code. Because you already specified the default library
path earlier, you do not need to enter the full path here.

6. Choose the OK button to save the project settings and close the Project
Settings box.

Creating an Implementation File for the Hardware Handler

Note Directory “<HP TestExec SL home>\include” contains a header file named
“switch_hndl.h” that declares the prototypes for the functions used in a
hardware handler. If desired, you can “include” this file in your
implementation file to ensure that you call the functions correctly. Or, you
may even want to copy this file into your implementation file as a starting
point when implementing the functions. If you use this file as a template in
your implementation file, be sure to replace the UTAAPI macros in it with
UTADLL.

1. Choose File | New in the Visual C++ menu bar.

93

Note

Creating a Hardware Handler
Writing a Hardware Handler

2. On the Files tab in the New box, specify the file’s type, naared
location, as shown below, and choose the OK button to add it to your
project.

Mew ﬂﬂ

Files | Frojects I Wwiork spaces | Qther Documents |

%] Active Server Page ¥ Add to project:

2! Binary File

-t MyH amdler ;I
4] Bitmap File I

[CAC++ Header File

Co++ Source File File name:

T Cursar File IMyHandIel.d
[S] HTML Page

- Ylcon File Location:
Fom Macra File IC:\F'rc-gram Files\Microsaft Visua J

3. Type the file’s contents in the editor window that appears.

Writing the Routines for Functionsin the Implementation File

Be sure to specify “#include <uta.h>" at the beginning of the
implementation file for a hardware handler.

As a minimum, all hardware handlers reqibdex| ar ePar ns() ,

Init(),d ose(),andReset () functions in them. Even if these
functions do nothing, they must be present or HP TestExec SL will generate
an error when attempting to call them. The example shown below includes
additional, switching-specific functions because it is for a switching handler,
which is a common type of hardware handler used to control switching
hardware. If you need to know more about a particular function, look it up in
Chapter 3 in th&eference book.

1. Add anl ni t () function to initialize or “open” a hardware module.

Code that you write to implement this functievhich must appear in all
hardware handlers, should do whatever is needed to initialize the

1. Unlessyou have aspecific reason for writing ahardware handler in C++, use
a “.c” extension for your implementation file so it matches the examples.

Creating a Hardware Handler
Writing a Hardware Handler

hardware module. For example, you can allocate the memory for a
structure to hold transient data used by a function in your hardware
handler.

. Addad ose() function to close a hardware modul e opened with the
I nit() function.

Code that you write to implement this function, which must appear in all
hardware handlers, should do whatever is needed to close the hardware
module, such as freeing or deleting any memory associated with a
structure created inthel ni t () function.

. Add aDecl ar ePar ns() function to declare parameters passed to the
hardware handler when it isloaded for execution. (You specify the actual
values of the passed parameters when you use the Switching Topol ogy
Editor to define switching topology.)

Code that you write to implement this function, which must appear in all
hardware handlers, should call the Ut aHMVbdDecl ar ePar m()
function to declare any parameters needed to distinguish one instance of
the hardware module from another, such as the module’'s GPIB address,
V Xlbus slot number, etc. Also, you can use this function to pass
configuration parameters, such as a parameter that chooses between 2x8
and 4x4 multiplexer configurations in a switching module.

One use for this function isto pass a parameter that identifies a specific
switching module among several modules of the same type. The code
you write in other functionsin the switching handler, such as

Set Posi tion() and Get Posi ti on(), usesthis parameter to
address a specific module according to the I/O or driver strategy used by
your module.

. Add aReset function to define what happens when the switching
moduleis reset, and return the amount of time it will take to finish
resetting, if any.

Code that you write to implement this function, which must appear in all
hardware handlers, should do whatever is needed to reset the hardware
modul e to whatever you want its default state to be. For example, the

95

Creating a Hardware Handler
Writing a Hardware Handler

UTAUSECS UTADLL
{
...(code that
...(code that
...(code that
...(code that

code needed to control switching elements depends on what kind of 1/0
or driver strategy your switching module uses.

A Reset function for the 2x2 matrix example might look like this:
Reset (HUTAPB hPar anet er Bl ock, LPVO D pBi ndDat a)
opens relay K11 via I/ O strategy for nodul e)
opens relay K12 via 1/ O strategy for nodul e)

opens relay K21 via I/O strategy for nodul e)
opens relay K22 via I/O strategy for nodul e)

return TI ME_TO RESET,;

}
5.

voi d UTADLL Decl
{

Add aDecl ar eNodes() function to declare the nodesinside the
switching module and any connectors that exist on the switching module.
Also, declare the adjacencies, which are two nodes in the switching
topology that can be connected by a switching element, in the switching
module.

Note that the Decl ar eNodes() function uses callsto the

Ut aHwibdDecl ar eNode() and

Ut abwMbdDecl ar eAdj acent () APIs. The node names you assign
in calstothe Ut aSwivbdDecl ar eNode() API arethe same nodes
names that appear when the Switching Configuration Editor is used to
define switching topology.

A Decl ar eNodes() function for the 2x2 matrix example might look
like this:

ar eNodes (HUTAHWMOD hModul e, HUTAPBDEF hPar nmBl ockDef)

/1 Decl are the nodes

Ut aHwVbdDecl ar eNode (hModul e,
Ut aHwVbdDecl ar eNode (hModul e,
Ut aHwvbdDecl ar eNode (hModul e,
Ut aHwvbdDecl ar eNode (hModul e,

"Cl-1", "Connector 1, Pin 1", NULL);
"Cl-2", "Connector 1, Pin 2", NULL);
"C2-1", "Connector 2, Pin 1", NULL);
"C2-2", "Connector 2, Pin 2", NULL);

96

Creating a Hardware Handler
Writing a Hardware Handler

/'l Declare the adjacencies -- i.e., pairs of adjacent nodes --
/'l connected via a switching el ement

Ut aHw\VbdDecl ar eAdj acent (hhodule, "C1-1", "C2-1", 11, 1);

Ut aHw\VbdDecl ar eAdj acent (hhbdul e, "C1-1", "C2-2", 12, 1);

Ut aHw\bdDecl ar eAdj acent (hhodul e, "C1-2", "C2-1", 21, 1);

Ut aHw\VbdDecl ar eAdj acent (hhbdul e, "C1-2", "C2-2", 22, 1);

}

6. AddaSet Posi tion() function to define the open and closed
positions for switching elements that connect adjacent nodes in the
switching module.

A Set Posi tion() function for the 2x2 matrix example might ook
like this:

UTAUSECS UTADLL Set Position (HUTAPB hPar anet er Bl ock, LPVO D pBi ndDat a,
| DUTASVEELM el enent, | DUTASWPCS position)

{
switch (el enent)
{
case 11: // switching elenment 11 is relay K11l
...(code that opens/closes relay K11 based on val ue of
..."position" via |I/O strategy for nodul e)
br eak;
case 12: // switching elenment 12 is relay Ki2
...(code that opens/closes relay K12 based on val ue of
..."position" via |I/O strategy for nodul e)
br eak;
case 21: // switching element 21 is relay K21
...(code that opens/closes relay K21 based on val ue of
..."position" via |I/O strategy for nodul e)
br eak;
case 21: // switching elenment 22 is relay K22
...(code that opens/closes relay K22 based on val ue of
..."position" via |I/O strategy for nodul e)
br eak;
}
}

Aswiththe Reset () function described earlier, this function requires
that you provide the actual code needed to open and close switching
elements in your specific switching module. The contents of this code

97

Creating a Hardware Handler
Writing a Hardware Handler

will vary with the I/O or driver strategy used by your switching module.

In the case of the simple relays used in this example, your code would
open the relay if “position” was passed a value of 0 and close it if the
value was 1.

You also may want to include error checking routines in this function (or
any of the functions, as needed). For example, here you could range
check the value of “position” to ensure it is 0 or 1 before programming a
switching element to a new position.

7. Add aGet Posi ti on() function to return the current position of a
specified switching element.

A Get Posi tion() function for the 2x2 matrix example might look
like this:

| DUTASWPOS UTADLL Get Position (HUTAPB hPar anet er Bl ock, LPVAO D
pBi ndDat a, | DUTASVELM el enment)

{

int nPosition;

...(code that assigns "position" the status of sw tching
...element "elenment" via I/O strategy for nodul e)

return (nPosition);

}

The code you provide here interrogates the switching module, via its
particular 1/0O or driver strategy, to determine if the switching element is
opened or closed. Then it assigri®si t i on a value of 1 if the
switching element is closed, or 0 if it is opened.

8. (optional) UseUt aHwivbdTr ace() orUt aHwModTr aceEx() to
send status messages to HP TestExec SL's Trace window during normal
testplan execution.

9. (optional) UseDecl ar eSt at us() andGet St at us() to send status
messages to HP TestExec SL's Watch window during debugging.

10.(optional) UseAdvi seMoni t or () to monitor the status of hardware.

98

Creating a Hardware Handler
Writing a Hardware Handler

11. (optional) Use Advi seUser Def i nedMessage() torespondto
user-defined messages and control hardware based on the contents of
those messages.

For an example of a hardware handler, search for “example, sample code for
a hardware handler” in online help and see the sample files in directory
“<HP TestExec SL home>\samples\filterdemo”.

Verifying the Project’s Contents

e Choose the FileView pane in the Visual C++ workspace window to verify
the contents of your project, as shown below.

INE
._Wnrkspace 'MyHandler: 1 project|z)
E|--- MyH andler files

| |

B Clags. FileWiew | 5 Infovi..

Choosing Which Configuration to Build

1. Choose Build | Set Active Configuration... in the Visual C++ menu bar.

2. Specify that you wish to build a debug version of the project, as shown

below.
Set Active Project Configuration ﬂm
Project configurations: oK

A etion - 'WindZ Release

e schion - "Winae Deb Cancel

Note The debug version of a program contains additional code that makes it larger
and slower to execute than a release version. Thus, you probably will want
to build a final, release version of the DLL after you have debugged it.

99

Note

Creating a Hardware Handler
Writing a Hardware Handler

3. Choose the OK button.

Building the Project

» Choose Build | Build project name> in the Visual C++ menu bar to
build the DLL.

Copying the DLL to Its Destination Directory

Each time you modify the DLL that contains your hardware handler, you
must recopy it to directory ‘P TestExec SL home>\bin”.

If desired, you can simplify copying DLLs for hardware handlers by creating
a custom tool similar to the one described for copying DLLs for actions
under “Copying the DLL to Its Destination Directory” in Chapter 3 of the
Using HP TestExec SL book.

100

Customizing Datalogging

This chapter describes how to customize datalogging to control the data that
appearsin log records and how to access that data in custom applications. For
general information about datal ogging, see Chapter 5inthe Using HP TestExec
S book.

101

Customizing Datalogging
The Datalogging Configuration Editor

The Datalogging Configuration Editor

HP TestExec SL provides a Datalogging Configuration Editor, which is
shown below, that you can use to:

« Examine or modify the default definitions of the records and fields plus
the hierarchy of the fields (but not the number or hierarchy of records)

« Specify the behavior and format of datalogging files

» Associate fields in log records with symbols in symbol tables

= - FT— -— -4
-]
:. T e
T]k
3 " T
';.III | HET S
¥iaaot e
] Cortaiy i S
:I-.' W) Dt il
a1 | eriptant H L
T EOAET ;-
P i =
E!E| 1 E; v
] Dt | o .‘_I
fE -
B &
=l -
= = ;l
: -] i

You can run the Datalogging Configuration Editor from the Start menu in
Windows. The editor’s online help describes how to use it and contains
detailed descriptions of the log records and the fields of data they contain.

102

Customizing Datalogging
Modifying the Records & Fields in Datalogging Files

Modifying the Records & Fieldsin Datalogging
Files

Datalogging automatically collects data about tests when a testplan runs.
The data collected includes:

« Information about a “batch” or group of UUTs
« Information about a specific UUT and the testplan used to test that UUT
* Information about an individual test done on a UUT

« Information about the operation of the limit checker used to evaluate the
pass/fail results of a test done on a UUT

» Information gathered from the stream of report information generated by
HP TestExec SL

« Information acquired when running a testplan in “learn” mode

Assuming that you are using the default log record format for HP TestExec
SL, this information is formatted into records and fields suitable for use with
a database.

For more information about the default definitions and how to modify them,
see the online help for the Datalogging Configuration Editor.

103

Customizing Datalogging
Enhancing Datalogging

Enhancing Datalogging

The default set of log records and descriptive fields provided with

HP TestExec SL isintended to cover most of your testing needs. However,
should you need to acquire additional information during datal ogging, you
can enhance the operation of the datalogging features. For example, you can
log the values of symbolsin symbol tables and log additional strings of
report information.

I nteracting with Symbol Tables

Thefollowing fieldsin the LogTestplan record reference predefined symbols
in the System symbol table:

» FixturelD

e ModuleType

¢ OperatorName

¢ RunCount

» SerialNumber

» TestStationID

e TestStatus

+ UnhandledErrorSource

As data is acquired via datalogging while testing, the values of these
symbols become part of the stream of log data being generated. If you wish
to examine their values, you can parse the datalogging files for them.

If the predefined symbols do not meet your needs, you can use the
Datalogging Configuration Editor to define additional fields in log records
and associate them with custom symbols in symbol tables of your choice.
These symbols can be in the predefined symbol tables, such as
Sequencelocals and TestStepLodals not in external, user-defined

symbol tables.

If you create custom symbols and associate them with fields in log records,
we recommend that you ensure that the scope of the fields and the symbol
tables are similar. For example, fields in a LogTestplan record might
reference symbols in the System or SequencelLocals symbol tables because
the scope of those symbol tables is the entire testplan. However, fields in a

104

Customizing Datalogging
Enhancing Datalogging

LogTestplan record should not reference symbolsin the TestStepL ocals and
TestStepParms symbol tables because the scope of those symbol tablesis an
individual test.

For more information about the LogTestplan record and using the
Datalogging Configuration Editor to define fields in log records and
associate them with symbolsin symbol tables, see the online help for the
Datalogging Configuration Editor. For general information about symbol
tables, see Chapter 5 of the Using HP TestExec S book.

Knowing When a Datalogging Fileis Available

Suppose you use an external program to parse the datalogging files

generated by HP TestExec SL. For example, your external program might

mani pul ate log data and then insert it into a database for subsequent analysis.

If you do this, it isimportant to know when HP TestExec SL has finished
writing its datalogging file. Code that you write—in an operator interface,
perhaps—can respond to a user-defined message and then parse the
datalogging file only when the file is known to be valid.

If you are using the HP TestExec SL Control (described later) or equivalent
functionality in the Runtime API (used to develop operator interfaces in
Visual C++) it can generate a user-defined message to indicate that
datalogging has finished. This message has the following characteristics:

* Its name is AfterDataLogFileWriteDone

» lts ID is 50002

e It returns a string that contains the name of the datalogging file

« |tis sent when the DataLogEnabled property of the HP TestExec SL

Control is set to “True” and the writing of datalogging files has not been
disabled via the DatalLogFileWriteEnabled message (described later).

105

Customizing Datalogging
Enhancing Datalogging

An example of using the AfterDatalogFileWriteDone message to check for
avalid datalogging file looks like this:

'Code in operator interface written in Visual Basic
Private Sub TestExecSL1_UserDefinedMessage (ID As Integer, TextBlock _
As String)
Select Case ID’Evaluate the identifier
Case 5002 'lIt is the AfterDataLogFileWriteDone message
...code that processes the datalogging file
Case Else 'The message is not of interest
Exit Sub
End Select
End Sub

For more information about user-defined messages and the HP TestExec SL
Control, see Chapter 1 of the Customizing HP TestExec SL book.

Using the Results of Datalogging in Custom
Applications

Disabling the Writing of Datalogging Files

If you are using the HP TestExec 9L Control (described later) or similar
functionality in the Runtime API (used to devel op operator interfacesin
Visual C++), it can send to HP TestExec SL a user-defined message that
prevents datal ogging files from being written although the processing of
logged data continues. This message has the following characteristics;

e Its name is DataLogFileWriteEnabled
e lItsID is 50010

» |t sends a string whose contents are “true” or “false”. If the message sent
contains “true”, HP TestExec SL writes datalogging files to the hard disk;
if “false”, the files will not be written but logged data will be processed if
the DataLogEnabled property of the HP TestExec SL Control is set to
“true”.

» |tis sent when the DataLogEnabled property of the HP TestExec SL
Control is set to “true” and datalogging is enabled for the testplan.

106

Customizing Datalogging
Enhancing Datalogging

« You send it as needed, which typically is once after loading a testplan.
An example of sending a DataLogFileWriteEnabled message to
HP TestExec SL via the HP TestExec SL Control looks like this:

'Code in operator interface written in Visual Basic
'Disable the writing of datalogging files
TestExecSL1.SendUserDefinedMessage(DatalLogFileWriteEnabled, "false")

Thisisuseful in custom applications where you do not need an actual
datalogging file. For example, you could use a Datal ogFileWriteEnabled
message to disable the writing of datalogging files and instead use the
AfterDatal ogCreateDone message (described above) to return the results of
datalogging for parsing by custom code in an operator interface.

For more information about user-defined messages and the HP TestExec SL
Control, see Chapter 1 of the Customizing HP TestExec SL. book.

Custom Parsing the Results of Datalogging

If desired, you can parse log data:
» Via a user-defined message as the testplan runs
» From a datalogging file after the testplan writes the file to disk

The main difference between these approaches lighemyou parse the
results. The following topics describe how to do these tasks.
Parsing the Resultsas a Testplan Runs

If you are using the HP TestExec SL Control (described later) or similar
functionality in the Runtime ARIt can generate a user-defined message that
contains the results of datalogging. This message has the following
characteristics:

e Its name is AfterDataLogCreateDone

* Its ID is 50001

107

Customizing Datalogging
Enhancing Datalogging

« It returns a string that contains the results of datalodging

» |tis sent when the DataLogEnabled property of the HP TestExec SL
Control is set to “True” and datalogging is enabled for the testplan.

This message is useful in custom applications because you can write code—
in an operator interface, perhaps—to parse the return string and then write
the results to a database.

A simple example of intercepting the appropriate message from the

HP TestExec SL Control and using that message to call the Datalogging
Control and populate its objects so you can parse their contents looks like
this:

Private Sub Test ExecSL1 User Defi nedMessage(ByVal Messagel D As Long, _
ByVal Message As String)
Sel ect Case Messagel D
Case 5001 'ID of 5001 is the AfterDatalLogCreateDone message
'Populate the datalogging control’s objects
TxSLDatalogl.ParseDatalLogMessage(Message)
...code that parses the contents of the control’s objects
Case El se
'Do nothing
End Select
End Sub

For more information about user-defined messages and the HP TestExec SL
Control, see Chapter 1 of the Customizing HP TestExec SL book.

Parsing the Resultsin a Datalogging File

If you are using the Datalogging Control (described later), HP TestExec SL's
datalogging behavior is set to "TxSL" and its datalogging file format is set to
"XML", you can readily parse data in a datalogging file. Accessing data in
datalogging files is a two-step process in which you:

1. Call the Datalogging ControlRar seDat aLogFi | e method to
populate the control’s internal objects with data from a datalogging file.

1. The string’s contents are formatted for whichever datalogging format is
specified in file “tstexcsl.ini”; i.e., XML, spreadsheet, or HP 3070.

108

Customizing Datalogging
Enhancing Datalogging

2. Use custom code that you write to access the Datalogging Control's
objects to parse the data they contain.

An example is shown below.

Di m MyDat al oggi ngFile As String

MyDat al oggi ngFile = "\logdir\logfile.xm"

"Popul ate the datal ogging control’s objects
HPTxSLDat aLogl. Par seDat aLogFi | e(MyDat al oggi ngFi | e)
...code that parses the contents of the control’s objects

For more information about setting HP TestExec SL's datalogging format
and behavior, see Chapter 5 of th&ng HP TestExec S book.

Changing the Name of the Datalogging File

The name of a datalogging file consists of a unique time stamp, a process ID,
and an extension organized like this:

4 chars — year

2 chars — month

2 chars — day

2 chars — hour, based on 24-hour clock

2 chars — minutes

3 chars — milliseconds

N chars — process ID for HP TestExec SL

“« xml” or “.log” — extensiort

An example of the name of a datalogging file might be:
19980708123306250224.xml

If you are using the HP TestExec SL Control (described later), you can
programmatically change the name of the file to which datalogging

1. The extension is “.xml” for XML format or “.log” for HP 3070 format.

109

Customizing Datalogging
Enhancing Datalogging

information is written. This is done via user-defined messages whose
characterigtics are:

Message ID Name

50011 UserDefinedFileName
50012 UserDefinedFileNamePrefix
50013 UserDefinedFileNameExtension

When HP TestExec SL receives one of these messages—sent by code in an
operator interface, perhaps—it modifies the name of the datalogging file as
requested in a string passed by the message.

When should you send this message? First, the message must be sent prior to
the writing of the datalogging file to disk; i.e., you cannot use this message

to change the name of an existing datalogging file. We recommend that you
follow this sequence of events:

1. Determine the name of the datalogging file, perhaps by having code in
your operator interface interrogate the UUT and use its serial number to
create a unique name for the datalogging file.

2. Have code in your operator interface send one of the message described
above that defines the name of the datalogging file.

3. Run the testplan.

Suppose for the sake of simplicity that the default name of the datalogging
file that HP TestExec SL produces is “12345.log” and that you wish to
change it from an operator interface written in Visual Basic that uses the
HP TestExec SL Control. Executing this line of code:

Test ExecSL1. SendUser Def i nedMessage(User Def i nedFi | eNanmeSuf fi x, "xzy")

changes the name of the datalogging file to “12345xyz.log” by adding
characters to the end of the file name.

Similarly, executing this line of code in Visual Basic:

Test ExecSL1. SendUser Def i nedMessage(User Def i nedFi | eNanmePrefi x, "abc")

110

Customizing Datalogging
Enhancing Datalogging

adds characters to the beginning of the file name. Here, “12345.log”
becomes “abc12345.log".

If you prefer to specify the entire file name instead of prepending or
appending to an existing one, executing this code:

Test ExecSL1. SendUser Def i nedMessage(User Def i nedFi | eName, "MFile")

creates a datalogging file named “MyFile.log".

Note If you specify a null value for the string passed in UserDefinedFileName, the
default file name will be used.

How do you decide which kind of message to use? See the table below.

If you need... Then use...

unique names for datalogging files User Def i nedFi | eNanePrefi x or
User Def i nedFi | eNaneSuf f i x because they
automatically maintain the uniqueness of file names by
combining a unique name generated by HP TestExec
SL with a prefix or suffix specified by you

non-unique names for datalogging files User Def i nedFi | eNane because it repeatedly
writes a file with the specified name unless your code
explicitly changes the file’s name. If you use this
message, be sure to write to an empty directory or
ensure that your code maintains the uniqueness of
datalogging file names. If a datalogging file of the same
name already exists, an error will occur and the new file
will not be written.

For more information about user-defined messages and the HP TestExec SL
Control, see Chapter 1 of ti@ustomizing HP TestExec SL book.

m

HP TestExec SL

Specify the format of log data

Datalogging
Configuration
Editor

Customizing Datalogging

Using the HP TestExec SL Datalogging Control

Using the HP TestExec SL Datalogging Control

What isthe HP TestExec SL Datalogging Control?

Besides the ActiveX control used to create operator interfaces writtenin
Visual Basic (described in Chapter 1 of the Customizing HP TestExec SL
book), HP TestExec SL provides an ActiveX control that supports custom

datal ogging applications.

As shown below, various messages are passed back and forth between

HP TestExec SL and the HP TestExec SL Control. Custom code that you
write responds to a message received by the HP TestExec SL Control and
calls the Datalogging Control as needed. This populates objects internal to
the Datalogging Control with data acquired via datal ogging. Accessing these
objectslets you further manipulate the data, which you can send to databases

or other applications.

Operator Interface
(Visual Basic)

Datalogging
Control

custom code
HP TestExec SL that you
[messages Control write
calls the
Datalogging

Control

P database

custom code
that you write
communicates
with a
database

Note that the Datalogging Control has no effect on which kind of datais
collected during datal ogging, or the format of the data. These are determined
by settings specified using the Datal ogging Configuration Editor.

What's Inside the Datalogging Control?

The Datalogging Control contains collections of objects organized in the
hierarchy of log records and fields used for datalogging. Seen at an overview

112

Customizing Datalogging
Using the HP TestExec SL Datalogging Control

level, the hierarchy of the internal objects and collections of objects looks

like that shown below.
LogBatch |
LogFields | [= collection
[= object
LogTestplan |
—I LogFields |
{ LogTest |
LogFields |
LogLimit |
LogFields |
LogLearning |
—I LogReport | LogFields |

LogFields |

The overall scheme is that each object can contain a collection of fields and
other objects that can also contain collections of fidds. For example, the
LogTestplan object contains:

» A LogFields collection that contains data items that describe the
characteristics of a testplan

« A LogTest object that contains a LogFields collection and a LogLimit
object that describe the characteristics of a test

« A LogReport object that contains a LogFields collection that contains
any report data produced during datalogging

The model shown above is overly simplistic insofar as actual datalogging is
complex enough to require collections of objects, as shown below. Here, the

113

Customizing Datalogging
Using the HP TestExec SL Datalogging Control

testplan contains more than one test. The LogTest objects that describe the
characteristics of individual tests reside in a collection name LogTests.!

L i LogTestplan |
l—{ LogTests | [= collection
: [= object
LogRepbn object % LogTest
LogFields |
LogLimit |
LogFields |
LogLearning |
% LogTest LogFields
LogFields |
LogLimit |

more Logfest objects...

LogFields |

LogLearning |

LogFields |

As shown below, the actual data acquired via datalogging residesin pairs of
names and values associated with LogField objects. For example, aLogTest
object might contain a LogFields collection that contains a LogField object

1. Notice the naming convention used here. The name of the collection is
plural—LogTests—and the name of each object in the collection—
LogTest—is singular.

114

Customizing Datalogging
Using the HP TestExec SL Datalogging Control

in which resides the name TestJudgment, whose value indicates whether the
test passed or failed.

LogBatch
LogFields | LogField | 1 = collection
[= object

LogTestplans }—‘—{ LogTestplan |
LogFields |—{ LogField |

LogTests }—‘—{ LogTest |

LogFields }T{ LogField |
Details of

more Name a
LogField LogField
; Value
objects Value | object

Accessing Collections & Objectsin the Datalogging
Control

An example of accessing a collection in the Datalogging Control and
printing its contents looks like this:

'Print the names/values of LogField objects in the LogFields collection
"in a LogTestplan object in the LogTestplans collection

Dim | As Integer
With TxSLDatalogl.LogBatch.LogTestplans(1).LogFields
For |1 =1 to .count
Debug.Print"Name: " & .ltem(l).Name &", Value: " & .Item(l).Value
Next |
End With

115

Customizing Datalogging
Using the HP TestExec SL Datalogging Control

The example accesses by index—LegTest pl ans(1) —the first
LogTestplan object in the LogTestplans collection. With the exception of the
LogFields collection, whose objects are accessible by name or by index, you
must access objects in collections in the Datalogging Control by their

indexest
The LogFields collection gives you the option of accessing its LogField
objects by name. This is useful when you wish to access the value of a

specific data iterd.An example of accessing by name a specific LogField
object in the LogFields collection is shown below.

'Example accesses by name the value contained in the LogField object
' named "TestName"

Dim MyTestName As String

MyTestName = TxSLDataLogl.LogTestplans(1).LogTests(1). _

Note

LogFields("TestName").Value

You can find a more detailed description of these objects and collectionsin
the online help for the Datalogging Control. The hierarchy of objectsin the
Datalogging Control corresponds to the hierarchy of records and fields for
logged data described in the online help for the Datalogging Configuration
Editor. For example, the LogTestplan object in the Datalogging Control
corresponds to the LogTestplan record in the datal ogging schema, and the
LogField object corresponds to individual fields.

The properties of the HP TestExec SL Control’s internal objects do not
appear in Visual Basic's Properties window. You must browse the control’'s
online help or use Visual Basic’'s Object Browser to find descriptions of its
internal objects and their properties and methods.

1. Objects are added to collections in the order in which they arrive; i.e., (1)
before (2). This can be useful if you wish to parse them later in the same
sequence as when they arrived.

2. The names of LogField objects correspond to the names of fieldsin the
hierarchy of logged data.

116

Customizing Datalogging
Using the HP TestExec SL Datalogging Control

Adding the Datalogging Control to a Project

Assuming that HP TestExec SL isinstalled on your system, you can do the
following to add the Datalogging Control to your project:

1. Open an existing or anew project in Visual Basic

2. Choose Project | Components in Visual Basic’s menu bar.

3. When the Components box appears, be sure its Controls tab is selected.

4. Choose the Browse button and locate the Datalogging Control, which is
in file “txsldatalog.ocx” in directory “HP TestExec S home>\bin”.

When this file is selected, the HP TestExec SL control will appear in the
list of controls, as shown below.

Controls I Designersl Inzertable Ell:uiec:tsl

[JHP TestExecsL Activer Contral Library -
PP TestExecsL Dakalog Contral Library
icrrfilter 1.0 Type Library

5. Choose the OK button.
Once the Datalogging Control appears in Visual Basic’s Toolbox, you can

use the mouse to place it on a form as you would any other control. When
copied onto a form, the control looks like this:

i, Project] - Form1 [Form]

117

Customizing Datalogging
Using the HP TestExec SL Datalogging Control

Note As shown below, you probably will want to set the Datalogging Control's
Vi si bl e property toFal se to keep the control from appearing at runtime.

Properties - TxS5LDatalogl E
|TxSLDatalog TxSLDatalog - |

Alphabetic ICategurized |

Top =70 -~
True hl

WhhatzThisHeIRT M hd

Getting Online Help for the Datalogging Control

You can invoke online help for theDatalogging Control by selecting the
control when it appears on a form and then pressing softkey F1.

118

| ndex

A

action
for use with operator interfaces, 56
used to prompt system operators, 56
AfterDatal ogCreateDone message, 107
AfterDatal ogFileWriteDone message,
105
automation interface, 12
creating in Visual C++, 77
typical scenario, 12
typical tasksfor, 13
automation interface created in Visual
C++
dealing with problems that arise
during testing, 82
displaying messagesto user interface,
80
generating repair information, 81
LAN communications, 82
monitoring test results, 79
responding to keyboard & mouse
commands, 80
signaling downstream devices, 82
using a bar code reader with, 79
using datalogging with, 82
writing repair tickets, 81

B

bar code
changing the processing of,, 63
parsing into aUUT type & serial
number, 63
bar code reader
changing how bar codes are
processed, 63
overview of using with operator
interfaces, 62
parsing bar codes in operator
interfaces created in Visua Basic,
47
sample bar codes used to test bar code
readers, 65
testing, 65
typica characteristics of, 63

using to automatically load testplans
in an operator interface, 68

using with an automation interface
created in Visual C++, 79

concurrent testing, 41
control
HP TestExec SL Control, 17
HP TestExec SL Datalogging Control,
112
customization
customizing datalogging, 101
customizing operator interfaces
created in Visua Basic, 15
customizing operator interfaces
created in Visual C++, 68

D

DatalogFileWriteEnabled message,
106
datalogging
changing the name of the datalogging
file, 109
custom parsing the results of, 107
disabling the writing of datalogging
files, 106
enhancing, 104
interacting with symbol tables, 104
knowing when adatalogging fileis
available, 105
name of the datalogging file, 109
parsing the results as a testplan runs,
107
parsing the results in a datalogging
file, 108
using the HP TestExec SL
Datalogging Control, 112
Datalogging Configuration Editor, 102
datalogging control. See "HP TestExec
SL Datalogging Control"
disabling the writing of datalogging
files, 106

Index-2

E

enhancing datalogging, 104
event
associated with testplans, 25
associated with tests, 28
in HP TestExec SL Control, 25

H

hardware handler
creating, 86
interacting with an operator interface
created in Visual Basic, 40
using to monitor the status of
hardware, 87
help
online help for the HP TestExec SL
Control, 21
online help for the HP TestExec SL
Datalogging Control, 118
HP TestExec SL Control, 17
adding to a Visual Basic project, 19
events, 25
getting online help for, 21
methods, 23
states, 23
HP TestExec SL Datalogging Control,
112
accessing internal objects &
collectionsin, 115
adding to a Visual Basic project, 117
getting online help for, 118
overview of internal objects &
collections, 113

L
language
adding language support for a new
control to an operator interface
created in Visual Basic, 53
adding language support for a new
message to an operator interface
created in Visual Basic, 54

adding support for a new language to
an operator interface created in
Visual Basic, 50

changing for operator interface
created in Visual Basic, 47

M

method
in HP TestExec SL Control, 23

O

operator interface, 2

actions provided for use with, 56

appearance of, 3

associating testplans & UUTswith, 68

best way to create, 3

creating in Visual Basic, 15

creating in Visual C++, 73

designing for usability, 3

reasons for customizing, 2

sample actions provided for testing &
debugging, 14

testing & debugging, 14

using breakpointsin Visual Basic
when debugging, 43

which programming languages are
supported for, 3

operator interface created in Visua
Basic, 15

See also "HP TestExec SL control"

accessing a symbol table from, 65

accessing hardware resources from,
39

adding information to reports, 45

adding language support for a new
control, 53

adding language support for a new
message, 54

adding support for a new language, 50

changing theinformation that appears
in reports, 46

changing the language, 47

concurrent testing, 41

configuring, 43

Index-3

controlling what appearsin reports, 44

example of minimum code needed to
implement, 21

finding itemsin code, 21

hiding existing functionality of, 43

how itinteractswith HP TestExec SL,
17

interacting with hardware handlers, 40

parsing bar codes, 47

samples provided by HP, 16

skills needed to customize, 17

user-defined message, 32

user-defined query, 37

user-defined response, 37

operator interface created in Visua
C++, 68

accessing global datafrom, 72

beginning atest cycle, 75

beginning when testplan nameis
unknown, 76

displaying messages, 76

displaying name of current test, 76

displaying testplan & test timing, 76

how it requests service, 70

interacting with test sequencer, 72

overview of internal operation, 69

responding to a Run button, 74

=]
parallel testing, 41

S

State
for operator interfacecreatedin Visual
Basic, 23
for operator interfacecreatedin Visual
C++, 70
symbol table
accessing from an operator interface
created in Visua Basic, 65
interacting with datalogging, 104

T

test
events associated with, 28
testing morethan one UUT at atime, 41
test-level event, 28
enabling & disabling, 29
testplan
associating with an operator interface,
68
events associated with, 25
prompting system operators from, 61
sample testplans used to test bar code
readers, 65
testplan-level event, 25

U

user-defined message, 32
reserved by HP, 39
user-defined query, 37
user-defined response, 37
UserDefinedFileName message, 110
UserDefinedFileNameExtension
message, 110
UserDefinedFileNamePrefix message,
110
uuT
associ ating with an operator interface,
68

Index-4

	1 Customizing the Operator Interface
	About Operator Interfaces
	What is an Operator Interface?
	Which Operator Interfaces are Provided?
	Why Customize an Operator Interface?
	Which Programming Languages Can I Use?
	What is the Best Way to Begin?
	What Should an Operator Interface Look Like?
	Overview
	Know Your Audience
	Keep the Appearance Simple
	What Level of Access Should Operators Have?
	Make the Layout Logical
	Interacting With Operators
	Overview
	Providing Useful Prompts & Status Information
	Minimizing Visual Clutter
	Making Messages Clear
	Preventing Common Errors Before They Occur
	Using Shortcuts to Accommodate Different Styles

	What About Multiple Languages?
	What About Testing the Operator Interface?

	About Automation Interfaces
	What is an Automation Interface?
	A Typical Scenario for an Automation Interface
	What Tasks Does an Automation Interface Do?

	Testing & Debugging an Operator Interface
	How Should I Test and Debug an Operator Interface?
	Using Sample Actions to Exercise an Operator Interface

	Operator Interfaces Created in Visual Basic
	What is the Standard Operator Interface in Visual Basic?
	How Much Visual Basic Do I Need to Know?
	How Does Visual Basic Interact with HP�TestExec SL?
	What is Inside the HP TestExec SL Control?
	Adding the HP TestExec SL Control to a Project
	Getting Online Help for the Control
	Finding Items in Operator Interface Code
	What is the Minimum Operator Interface to Run a Testplan?
	Writing the Code for a Minimal Operator Interface
	Why the Minimal Operator Interface is Not Enough

	Understanding the HP�TestExec SL Control’s States & Methods
	Understanding the HP TestExec SL Control’s Events
	The Two Levels of Events
	Events Associated with Testplans
	Events Associated with Individual Tests
	About Test�Level Events
	Miscellaneous Events

	Using the HP TestExec SL Control’s Events

	Understanding User-Defined Messages
	Why Pass Information Between Processes?
	Passing Information Between Processes
	User�Defined Messages Reserved by Hewlett�Packard

	Accessing Hardware Resources from an Operator Interface
	When Do Operator Interfaces Access Hardware Resources?
	Accessing the Hardware Resources

	What About Concurrent Testing?
	Miscellaneous Notes
	Changing or Enhancing Existing Functionality
	Changing the Configuration of an Operator Interface
	A Quick Way to Hide Existing Functionality
	Controlling the Information That Appears in Reports
	Accessing the Default Information
	What if Reports Need Additional Information?
	What if Reports Need Different Information?

	Changing the Language
	Which Languages Can I Use?
	Changing the Default Language
	Switching Among the Built-In Languages
	How Does Multi�Language Support Work?
	What About Languages That Are Not Built In?
	Adding Language Support for a New Control
	Adding Language Support for a New Message

	Prompting a System Operator from HP TestExec SL
	Associating Testplans & UUTs with an Operator Interface

	Using Peripherals with Operator Interfaces
	Which Peripherals are Supported?
	The “One Peripheral Per Form” Convention
	Using Bar Code Readers
	About Bar Code Readers
	Changing the Processing of Bar Codes
	Testing the Code for Bar Code Readers

	Accessing Symbol Tables from an Operator Interface

	Operator Interfaces Created in Visual C++
	What is the Standard Operator Interface in Visual C++?
	Inside an Operator Interface in Visual C++
	Overview
	How the Operator Interface Requests Service
	Accessing Global Data from the Operator Interface
	Interacting with the Test Sequencer

	Creating an Operator Interface in Visual C++
	Doing Specific Tasks with an Operator Interface in Visual C++
	Responding to a “Run” Button
	Beginning a Test Cycle
	Displaying the Name of the Current Test
	Displaying the Testplan and Test Timing
	Displaying Messages
	Beginning When the Testplan Name is Unknown

	Creating an Automation Interface in Visual C++
	Software Configuration for an Automation Interface
	Choosing a Task Model in Windows
	Using a Bar Code Reader
	Monitoring Test Results
	Displaying Messages to the User Interface
	Responding to Keyboard and Mouse Commands
	Generating Repair Information
	Writing Repair Tickets
	Signaling Downstream Devices
	Datalogging
	LAN Communications
	Dealing with Problems

	2 Creating a Hardware Handler
	Writing a Hardware Handler
	Modeling Your Hardware
	Monitoring the Status of Hardware
	Creating a Project for the Hardware Handler
	Specifying the Path for Libraries
	Specifying the Path for Include Files
	Creating a New DLL Project
	Specifying the Project Settings
	Creating an Implementation File for the Hardware Handler
	Writing the Routines for Functions in the Implementation File
	Verifying the Project’s Contents
	Choosing Which Configuration to Build
	Building the Project
	Copying the DLL to Its Destination Directory

	3 Customizing Datalogging
	The Datalogging Configuration Editor
	Modifying the Records & Fields in Datalogging Files
	Enhancing Datalogging
	Interacting with Symbol Tables
	Knowing When a Datalogging File is Available
	Using the Results of Datalogging in Custom Applications
	Disabling the Writing of Datalogging Files
	Custom Parsing the Results of Datalogging
	Parsing the Results as a Testplan Runs
	Parsing the Results in a Datalogging File

	Changing the Name of the Datalogging File

	Using the HP TestExec SL Datalogging Control
	What is the HP TestExec SL Datalogging Control?
	What’s Inside the Datalogging Control?
	Accessing Collections & Objects in the Datalogging Control
	Adding the Datalogging Control to a Project
	Getting Online Help for the Datalogging Control

	Index

